Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
    Clear
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10,455 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • other engineering and technologies
  • KR
  • PK

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Heng Liang Zhang; Heng Liang Zhang; Hyung Hee Cho; Dan Mei Xie; +2 Authors

    Abstract The accurate information of the thermal stresses and temperature in isotropic elastic solids is the key for many engineering applications. At present the classical linear coupled theory of thermoelasticity deduced with the assumptions of small temperature changes is widely used to solve the thermoelastic problems in engineering. In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. The effect of large temperature changes on the solutions of thermoelastic problems is discussed. For the heat transfer process, if the isotropic elastic solids will expand when heated and contract when cooled and the condition d E E d T · σ i j E − δ i j 1 − 2 ν α 0 can be met in the context of small deformations, the effect of large temperature changes can be regarded as increasing the specific heat. The proposed models are applied to solve two thermoelastic problems. From the obtained numerical results, the effect of large temperature changes will increase with the amplitude of temperature change and may be considerably even when the temperature changes slowly.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ikram Mehrez; Gopalakrishnan Kumar; Sang Hyoun Kim; Kuppam Chandrasekhar;

    Abstract Date biomass is a carbon-rich renewable resource that can be considered a potential carbon-rich substrate for energy generation over anaerobic digestion (AD). However, due to its complex nature, appropriate pretreatment is necessary to achieve a higher methane yield. Hence, the current study was envisioned to evaluate the influence of three different pretreatment strategies, namely acid, alkali, and hydrothermal pretreatment on biochemical methane potential (BMP) of seven diverse sorts of Algerian date biomass, namely Pedicels, Fibrilium, Petiole, Fruit bunch, Spath, Palm, and its mixture. Among all the pretreatment conditions, alkaline pretreatment highly influenced the lignin composition of date biomass and showed higher BMP. Among all sorts of biomass, higher BMP was detected through Palm as 295.9 mL CH4/g-TS, whereas the lowest BMP values were recorded with Petiole as 226.74 mL CH4/g-TS. Among all the experimental variations, ammonium pretreated Palm biomass documented the highest substrate conversion efficiency (63.80%), which correlates well with the observed higher BMP values. Nevertheless, there was a very marginal improvement in BMP detected in the case of other pretreatment strategies compared to alkaline pretreatment. This might be due to the efficacy of the applied pretreatment method on delignification of date biomass.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Chemical Engineering
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Chemical Engineering
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ubaid Ur Rehman Zia; Hina Aslam; Muhammad Zulfiqar; Sibghat Ullah;

    In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Renewable Energy Development
    Article . 2023 . Peer-reviewed
    License: CC BY SA
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Renewable Energy Development
      Article . 2023 . Peer-reviewed
      License: CC BY SA
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Seunghwan Wi; Young Uk Kim; Seong Jin Chang; Umberto Berardi; +1 Authors

    Exterior insulation finishing systems (EIFSs) can efficiently promote energy efficiency of buildings. In this study, an EIFS with high thermal efficiency is presented to improve the insulation behavior of building enclosure. Based on heat transfer analysis results, energy simulations of buildings with fire spread prevention structures were performed. Results revealed that heat flow through the wall increased by 10.3 % when using a metal rail to fix the insulation; in contrast, using non-combustible phenolic foam reduces heat flow by 37.4 %, satisfying the requirement for fire spread prevention structures. Additionally, the energy consumption decreased by 8.8 % when both mineral wool and phenolic foam were applied. Fire spread prevention structures are essential to improve the fire safety performance of buildings. This external insulation system efficiently promote energy saving in building; additionally, leveraging a phase change material to improve the thermal storage performance of the building can reduce energy consumption by up to 11.9 %.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Su Sang Yu; Tae Hoon Lee; Taek Hyun Oh;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saydaliev, Hayot Berk; Lan, Jing; Anser, Muhammad Khalid; Ali, Sajid; +1 Authors

    Renewable energy has become more popular since it is cost-effective and more efficient than conventional energy sources. Biomass-based renewable energy is primarily used in emerging economies to ensure environmental sustainability. This study examines the asymmetric correlation between biomass energy consumption and CO2 emissions in the top-10 biomass energy consumer countries (Brazil, Canada, Thailand, China, Italy, India, Germany, USA, UK, and Japan). A new approach "Quantile-onQuantile (QQ)" is employed by utilizing the data from 1991 to 2018. Biomass energy consumption, with the exception of Thailand, significantly mitigates CO2 emissions at various quantiles in selected countries. As a robustness check, we used the quantile regression test, whose findings are consistent with the outcomes from the quantile-on-quantile method. However, the degree of asymmetry in the biomass energy-CO2 nexus varies by country, necessitating extra attention and government vigilance when developing biomass energy and environmental policies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; +7 Authors

    Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Korea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Korean Physical Society
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Korea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Korean Physical Society
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Umar Farooq; Hassan Waqas; Musaad S. Aldhabani; Nahid Fatima; +4 Authors

    Cette étude examine les caractéristiques des profils de vitesse, de champ thermique et d'entropie pour l'écoulement de nanofluides hybrides traversant une feuille d'amidonnage avec un rayonnement thermique. Les nanotubes de carbone (SWCNT et MWCNT) sont utilisés comme nanoparticules avec flux de chaleur Cattaneo-Christov (CC). L'éthylène glycol est utilisé comme fluide de base dans ce cas. Pour obtenir une solution améliorée, l'écoulement de fluide sur les propriétés géométriques est conçu en utilisant des PDE hautement non linéaires, et les équations gouvernantes doivent être converties en systèmes d'équations non similaires sans dimension en utilisant le schéma de Keller-box bien connu et très efficace dans le logiciel de calcul Matlab. La faisabilité pratique de ces solutions est déterminée par la plage des paramètres de contrôle. La distribution de vitesse diminue à mesure que l'estimation des paramètres magnétiques augmente, cependant, le champ de température et la production d'entropie augmentent à mesure que la fluctuation des paramètres magnétiques diminue. Au fur et à mesure que le paramètre de glissement augmente, le champ de vitesse diminue. Le champ thermique est amélioré pour augmenter le paramètre de rayonnement, et le profil d'entropie est renforcé pour augmenter les valeurs des paramètres de Brinkman. Les résultats de cette recherche pourraient avoir un impact significatif sur les industries où le refroidissement et le chauffage locaux par jets d'impact sont nécessaires dans les appareils électroniques, les dissipateurs thermiques, les technologies de séchage, etc. À la connaissance des auteurs, il s'agit du premier effort visant à utiliser un nanofluide hybride pour analyser la formation d'entropie due au flux magnétohydrodynamique sur une feuille d'amidonnage. Este estudio examina las características de los perfiles de velocidad, campo térmico y entropía para el flujo híbrido de nanofluidos que pasa a través de una lámina de almidón con radiación térmica. Los nanotubos de carbono (SWCNT y MWCNT) se utilizan como nanopartículas con flujo de calor Cattaneo-Christov (CC). El etilenglicol se utiliza como fluido base en este caso. Para lograr una solución mejorada, el flujo de fluido sobre las propiedades geométricas se diseña utilizando PDE altamente no lineales, y las ecuaciones gobernantes deben convertirse en sistemas de ecuaciones no similares adimensionales utilizando el conocido esquema de Keller-box altamente eficiente en el software computacional MATLAB. La viabilidad práctica de estas soluciones está determinada por el rango de los parámetros de control. La distribución de velocidad se reduce a medida que aumenta la estimación del parámetro magnético, sin embargo, el campo de temperatura y la producción de entropía aumentan a medida que la fluctuación del parámetro magnético se aclara. A medida que aumenta el parámetro de deslizamiento, el campo de velocidad disminuye. El campo térmico se mejora para aumentar el parámetro de radiación, y el perfil de entropía se aumenta para aumentar los valores de los parámetros de Brinkman. Los hallazgos de esta investigación podrían tener un impacto significativo en las industrias donde se necesita refrigeración local y calefacción a través de chorros de choque en dispositivos electrónicos, disipadores de calor, tecnologías de secado, etc. Según el conocimiento de los autores, este es el primer esfuerzo para emplear un nanofluido híbrido para analizar la formación de entropía debido al flujo magnetohidrodinámico sobre una lámina de almidón. This study examines the characteristics of the velocity, thermal field and entropy profiles for hybrid nanofluid flow passing through a starching sheet with thermal radiation. The carbon nanotube (SWCNT and MWCNT) are used as a nanoparticles with Cattaneo-Christov (CC) heat flux. Ethylene glycol is utilized as a base fluid in this case. To achieve an improved solution, the fluid flow over the geometric properties is designed using highly non-linear PDEs, and the governing equations must be converted into dimensionless non-similar equation systems using the highly efficient well-known Keller-box scheme in computational software MATLAB. The practical feasibility of these solutions is determined by the range of the controlling parameters. The velocity distribution reduces as the magnetic parameter estimate increases, however, the temperature field and entropy production increase as the magnetic parameter fluctuation esclates. As the slip parameter is increased, the velocity field diminish. The thermal field is enhanced for rising the radiation parameter, and the entropy profile is boosted for increasing Brinkman parameter values. The findings of this research might have a significant impact on industries where local cooling and heating via impingement jets are needed in electronic devices, heat sinks, drying technologies, and so on. To the best of the authors' knowledge, this is the first effort to employ a hybrid nanofluid to analyze entropy formation due to magnetohydrodynamics flow over a starching sheet. تبحث هذه الدراسة في خصائص ملامح السرعة والحقل الحراري والانتروبيا لتدفق السوائل النانوية الهجينة التي تمر عبر ورقة النشا مع الإشعاع الحراري. يتم استخدام الأنبوب النانوي الكربوني (SWCNT و MWCNT) كجسيمات نانوية مع تدفق حراري Cattaneo - Christov (CC). يستخدم جلايكول الإيثيلين كسائل أساسي في هذه الحالة. لتحقيق حل محسّن، تم تصميم تدفق المائع عبر الخصائص الهندسية باستخدام PDEs غير خطية للغاية، ويجب تحويل المعادلات الحاكمة إلى أنظمة معادلات غير متشابهة بلا أبعاد باستخدام مخطط Keller - box المعروف عالي الكفاءة في البرنامج الحاسوبي MATLAB. يتم تحديد الجدوى العملية لهذه الحلول من خلال نطاق معلمات التحكم. ينخفض توزيع السرعة مع زيادة تقدير المعلمة المغناطيسية، ومع ذلك، يزداد مجال درجة الحرارة وإنتاج الإنتروبيا مع تذبذب المعلمة المغناطيسية. مع زيادة معامل الانزلاق، يتناقص مجال السرعة. يتم تعزيز المجال الحراري لرفع معلمة الإشعاع، ويتم تعزيز ملف تعريف الإنتروبيا لزيادة قيم معلمة برينكمان. قد يكون لنتائج هذا البحث تأثير كبير على الصناعات التي تحتاج إلى التبريد والتدفئة المحليين عبر نفاثات الاصطدام في الأجهزة الإلكترونية وأحواض الحرارة وتقنيات التجفيف وما إلى ذلك. على حد علم المؤلفين، هذا هو أول جهد لتوظيف مائع نانوي هجين لتحليل تكوين الإنتروبيا بسبب تدفق الديناميكا المائية المغناطيسية على ورقة النشا.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arabian Journal of C...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Arabian Journal of Chemistry
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Arabian Journal of Chemistry
    Article . 2023
    Data sources: DOAJ
    https://dx.doi.org/10.60692/77...
    Other literature type . 2023
    Data sources: Datacite
    https://dx.doi.org/10.60692/w9...
    Other literature type . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arabian Journal of C...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Arabian Journal of Chemistry
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Arabian Journal of Chemistry
      Article . 2023
      Data sources: DOAJ
      https://dx.doi.org/10.60692/77...
      Other literature type . 2023
      Data sources: Datacite
      https://dx.doi.org/10.60692/w9...
      Other literature type . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Haider Niaz; Moonyong Lee; Rofice Dickson; Rofice Dickson; +4 Authors

    Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jaerim Jang; Siarhei Dzianisau; Deokjung Lee;

    This paper presents the development of a nodal diffusion code, RAST-V, and its verification and validation for VVER (vodo–vodyanoi energetichesky reactor) analysis. A VVER analytic solver has been implemented in an in-house nodal diffusion code, RAST-K. The new RAST-K version, RAST-V, uses the triangle-based polynomial expansion nodal method. The RAST-K code provides stand-alone and two-step computation modes for steady-state and transient calculations. An in-house lattice code (STREAM) with updated features for VVER analysis is also utilized in the two-step method for cross-section generation. To assess the calculation capability of the formulated analysis module, various verification and validation studies have been performed with Rostov-II, and X2 multicycles, Novovoronezh-4, and the Atomic Energy Research benchmarks. In comparing the multicycle operation, rod worth, and integrated temperature coefficients, RAST-V is found to agree with measurements with high accuracy which RMS differences of each cycle are within ±47 ppm in multicycle operations, and ±81 pcm of the rod worth of the X2 reactor. Transient calculations were also performed considering two different rod ejection scenarios. The accuracy of RAST-V was observed to be comparable to that of conventional nodal diffusion codes (DYN3D, BIPR8, and PARCS).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nuclear Engineering and Technology
    Article . 2022 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nuclear Engineering and Technology
      Article . 2022 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10,455 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Heng Liang Zhang; Heng Liang Zhang; Hyung Hee Cho; Dan Mei Xie; +2 Authors

    Abstract The accurate information of the thermal stresses and temperature in isotropic elastic solids is the key for many engineering applications. At present the classical linear coupled theory of thermoelasticity deduced with the assumptions of small temperature changes is widely used to solve the thermoelastic problems in engineering. In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. The effect of large temperature changes on the solutions of thermoelastic problems is discussed. For the heat transfer process, if the isotropic elastic solids will expand when heated and contract when cooled and the condition d E E d T · σ i j E − δ i j 1 − 2 ν α 0 can be met in the context of small deformations, the effect of large temperature changes can be regarded as increasing the specific heat. The proposed models are applied to solve two thermoelastic problems. From the obtained numerical results, the effect of large temperature changes will increase with the amplitude of temperature change and may be considerably even when the temperature changes slowly.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    5
    citations5
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ikram Mehrez; Gopalakrishnan Kumar; Sang Hyoun Kim; Kuppam Chandrasekhar;

    Abstract Date biomass is a carbon-rich renewable resource that can be considered a potential carbon-rich substrate for energy generation over anaerobic digestion (AD). However, due to its complex nature, appropriate pretreatment is necessary to achieve a higher methane yield. Hence, the current study was envisioned to evaluate the influence of three different pretreatment strategies, namely acid, alkali, and hydrothermal pretreatment on biochemical methane potential (BMP) of seven diverse sorts of Algerian date biomass, namely Pedicels, Fibrilium, Petiole, Fruit bunch, Spath, Palm, and its mixture. Among all the pretreatment conditions, alkaline pretreatment highly influenced the lignin composition of date biomass and showed higher BMP. Among all sorts of biomass, higher BMP was detected through Palm as 295.9 mL CH4/g-TS, whereas the lowest BMP values were recorded with Petiole as 226.74 mL CH4/g-TS. Among all the experimental variations, ammonium pretreated Palm biomass documented the highest substrate conversion efficiency (63.80%), which correlates well with the observed higher BMP values. Nevertheless, there was a very marginal improvement in BMP detected in the case of other pretreatment strategies compared to alkaline pretreatment. This might be due to the efficacy of the applied pretreatment method on delignification of date biomass.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Chemical Engineering
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Environmental Chemical Engineering
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ubaid Ur Rehman Zia; Hina Aslam; Muhammad Zulfiqar; Sibghat Ullah;

    In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Renewable Energy Development
    Article . 2023 . Peer-reviewed
    License: CC BY SA
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Renewable Energy Development
      Article . 2023 . Peer-reviewed
      License: CC BY SA
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Seunghwan Wi; Young Uk Kim; Seong Jin Chang; Umberto Berardi; +1 Authors

    Exterior insulation finishing systems (EIFSs) can efficiently promote energy efficiency of buildings. In this study, an EIFS with high thermal efficiency is presented to improve the insulation behavior of building enclosure. Based on heat transfer analysis results, energy simulations of buildings with fire spread prevention structures were performed. Results revealed that heat flow through the wall increased by 10.3 % when using a metal rail to fix the insulation; in contrast, using non-combustible phenolic foam reduces heat flow by 37.4 %, satisfying the requirement for fire spread prevention structures. Additionally, the energy consumption decreased by 8.8 % when both mineral wool and phenolic foam were applied. Fire spread prevention structures are essential to improve the fire safety performance of buildings. This external insulation system efficiently promote energy saving in building; additionally, leveraging a phase change material to improve the thermal storage performance of the building can reduce energy consumption by up to 11.9 %.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Case Studies in Thermal Engineering
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Case Studies in Thermal Engineering
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Su Sang Yu; Tae Hoon Lee; Taek Hyun Oh;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saydaliev, Hayot Berk; Lan, Jing; Anser, Muhammad Khalid; Ali, Sajid; +1 Authors

    Renewable energy has become more popular since it is cost-effective and more efficient than conventional energy sources. Biomass-based renewable energy is primarily used in emerging economies to ensure environmental sustainability. This study examines the asymmetric correlation between biomass energy consumption and CO2 emissions in the top-10 biomass energy consumer countries (Brazil, Canada, Thailand, China, Italy, India, Germany, USA, UK, and Japan). A new approach "Quantile-onQuantile (QQ)" is employed by utilizing the data from 1991 to 2018. Biomass energy consumption, with the exception of Thailand, significantly mitigates CO2 emissions at various quantiles in selected countries. As a robustness check, we used the quantile regression test, whose findings are consistent with the outcomes from the quantile-on-quantile method. However, the degree of asymmetry in the biomass energy-CO2 nexus varies by country, necessitating extra attention and government vigilance when developing biomass energy and environmental policies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; +7 Authors

    Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Korea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Korean Physical Society
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Korea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Korean Physical Society
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Umar Farooq; Hassan Waqas; Musaad S. Aldhabani; Nahid Fatima; +4 Authors

    Cette étude examine les caractéristiques des profils de vitesse, de champ thermique et d'entropie pour l'écoulement de nanofluides hybrides traversant une feuille d'amidonnage avec un rayonnement thermique. Les nanotubes de carbone (SWCNT et MWCNT) sont utilisés comme nanoparticules avec flux de chaleur Cattaneo-Christov (CC). L'éthylène glycol est utilisé comme fluide de base dans ce cas. Pour obtenir une solution améliorée, l'écoulement de fluide sur les propriétés géométriques est conçu en utilisant des PDE hautement non linéaires, et les équations gouvernantes doivent être converties en systèmes d'équations non similaires sans dimension en utilisant le schéma de Keller-box bien connu et très efficace dans le logiciel de calcul Matlab. La faisabilité pratique de ces solutions est déterminée par la plage des paramètres de contrôle. La distribution de vitesse diminue à mesure que l'estimation des paramètres magnétiques augmente, cependant, le champ de température et la production d'entropie augmentent à mesure que la fluctuation des paramètres magnétiques diminue. Au fur et à mesure que le paramètre de glissement augmente, le champ de vitesse diminue. Le champ thermique est amélioré pour augmenter le paramètre de rayonnement, et le profil d'entropie est renforcé pour augmenter les valeurs des paramètres de Brinkman. Les résultats de cette recherche pourraient avoir un impact significatif sur les industries où le refroidissement et le chauffage locaux par jets d'impact sont nécessaires dans les appareils électroniques, les dissipateurs thermiques, les technologies de séchage, etc. À la connaissance des auteurs, il s'agit du premier effort visant à utiliser un nanofluide hybride pour analyser la formation d'entropie due au flux magnétohydrodynamique sur une feuille d'amidonnage. Este estudio examina las características de los perfiles de velocidad, campo térmico y entropía para el flujo híbrido de nanofluidos que pasa a través de una lámina de almidón con radiación térmica. Los nanotubos de carbono (SWCNT y MWCNT) se utilizan como nanopartículas con flujo de calor Cattaneo-Christov (CC). El etilenglicol se utiliza como fluido base en este caso. Para lograr una solución mejorada, el flujo de fluido sobre las propiedades geométricas se diseña utilizando PDE altamente no lineales, y las ecuaciones gobernantes deben convertirse en sistemas de ecuaciones no similares adimensionales utilizando el conocido esquema de Keller-box altamente eficiente en el software computacional MATLAB. La viabilidad práctica de estas soluciones está determinada por el rango de los parámetros de control. La distribución de velocidad se reduce a medida que aumenta la estimación del parámetro magnético, sin embargo, el campo de temperatura y la producción de entropía aumentan a medida que la fluctuación del parámetro magnético se aclara. A medida que aumenta el parámetro de deslizamiento, el campo de velocidad disminuye. El campo térmico se mejora para aumentar el parámetro de radiación, y el perfil de entropía se aumenta para aumentar los valores de los parámetros de Brinkman. Los hallazgos de esta investigación podrían tener un impacto significativo en las industrias donde se necesita refrigeración local y calefacción a través de chorros de choque en dispositivos electrónicos, disipadores de calor, tecnologías de secado, etc. Según el conocimiento de los autores, este es el primer esfuerzo para emplear un nanofluido híbrido para analizar la formación de entropía debido al flujo magnetohidrodinámico sobre una lámina de almidón. This study examines the characteristics of the velocity, thermal field and entropy profiles for hybrid nanofluid flow passing through a starching sheet with thermal radiation. The carbon nanotube (SWCNT and MWCNT) are used as a nanoparticles with Cattaneo-Christov (CC) heat flux. Ethylene glycol is utilized as a base fluid in this case. To achieve an improved solution, the fluid flow over the geometric properties is designed using highly non-linear PDEs, and the governing equations must be converted into dimensionless non-similar equation systems using the highly efficient well-known Keller-box scheme in computational software MATLAB. The practical feasibility of these solutions is determined by the range of the controlling parameters. The velocity distribution reduces as the magnetic parameter estimate increases, however, the temperature field and entropy production increase as the magnetic parameter fluctuation esclates. As the slip parameter is increased, the velocity field diminish. The thermal field is enhanced for rising the radiation parameter, and the entropy profile is boosted for increasing Brinkman parameter values. The findings of this research might have a significant impact on industries where local cooling and heating via impingement jets are needed in electronic devices, heat sinks, drying technologies, and so on. To the best of the authors' knowledge, this is the first effort to employ a hybrid nanofluid to analyze entropy formation due to magnetohydrodynamics flow over a starching sheet. تبحث هذه الدراسة في خصائص ملامح السرعة والحقل الحراري والانتروبيا لتدفق السوائل النانوية الهجينة التي تمر عبر ورقة النشا مع الإشعاع الحراري. يتم استخدام الأنبوب النانوي الكربوني (SWCNT و MWCNT) كجسيمات نانوية مع تدفق حراري Cattaneo - Christov (CC). يستخدم جلايكول الإيثيلين كسائل أساسي في هذه الحالة. لتحقيق حل محسّن، تم تصميم تدفق المائع عبر الخصائص الهندسية باستخدام PDEs غير خطية للغاية، ويجب تحويل المعادلات الحاكمة إلى أنظمة معادلات غير متشابهة بلا أبعاد باستخدام مخطط Keller - box المعروف عالي الكفاءة في البرنامج الحاسوبي MATLAB. يتم تحديد الجدوى العملية لهذه الحلول من خلال نطاق معلمات التحكم. ينخفض توزيع السرعة مع زيادة تقدير المعلمة المغناطيسية، ومع ذلك، يزداد مجال درجة الحرارة وإنتاج الإنتروبيا مع تذبذب المعلمة المغناطيسية. مع زيادة معامل الانزلاق، يتناقص مجال السرعة. يتم تعزيز المجال الحراري لرفع معلمة الإشعاع، ويتم تعزيز ملف تعريف الإنتروبيا لزيادة قيم معلمة برينكمان. قد يكون لنتائج هذا البحث تأثير كبير على الصناعات التي تحتاج إلى التبريد والتدفئة المحليين عبر نفاثات الاصطدام في الأجهزة الإلكترونية وأحواض الحرارة وتقنيات التجفيف وما إلى ذلك. على حد علم المؤلفين، هذا هو أول جهد لتوظيف مائع نانوي هجين لتحليل تكوين الإنتروبيا بسبب تدفق الديناميكا المائية المغناطيسية على ورقة النشا.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arabian Journal of C...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Arabian Journal of Chemistry
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Arabian Journal of Chemistry
    Article . 2023
    Data sources: DOAJ
    https://dx.doi.org/10.60692/77...
    Other literature type . 2023
    Data sources: Datacite
    https://dx.doi.org/10.60692/w9...
    Other literature type . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    35
    citations35
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arabian Journal of C...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Arabian Journal of Chemistry
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Arabian Journal of Chemistry
      Article . 2023
      Data sources: DOAJ
      https://dx.doi.org/10.60692/77...
      Other literature type . 2023
      Data sources: Datacite
      https://dx.doi.org/10.60692/w9...
      Other literature type . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Haider Niaz; Moonyong Lee; Rofice Dickson; Rofice Dickson; +4 Authors

    Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    83
    citations83
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jaerim Jang; Siarhei Dzianisau; Deokjung Lee;

    This paper presents the development of a nodal diffusion code, RAST-V, and its verification and validation for VVER (vodo–vodyanoi energetichesky reactor) analysis. A VVER analytic solver has been implemented in an in-house nodal diffusion code, RAST-K. The new RAST-K version, RAST-V, uses the triangle-based polynomial expansion nodal method. The RAST-K code provides stand-alone and two-step computation modes for steady-state and transient calculations. An in-house lattice code (STREAM) with updated features for VVER analysis is also utilized in the two-step method for cross-section generation. To assess the calculation capability of the formulated analysis module, various verification and validation studies have been performed with Rostov-II, and X2 multicycles, Novovoronezh-4, and the Atomic Energy Research benchmarks. In comparing the multicycle operation, rod worth, and integrated temperature coefficients, RAST-V is found to agree with measurements with high accuracy which RMS differences of each cycle are within ±47 ppm in multicycle operations, and ±81 pcm of the rod worth of the X2 reactor. Transient calculations were also performed considering two different rod ejection scenarios. The accuracy of RAST-V was observed to be comparable to that of conventional nodal diffusion codes (DYN3D, BIPR8, and PARCS).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nuclear Engineering and Technology
    Article . 2022 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Engineering ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nuclear Engineering and Technology
      Article . 2022 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph