- home
- Advanced Search
- Energy Research
- KR
- Energy Research
- KR
description Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Adele Brunetti; K.-H. Lee; D.-W. Lee; Enrico Drioli; Bongkuk Sea; Giuseppe Barbieri;Water gas shift reaction for hydrogen production was studied in a catalytic membrane reactor using a supported silica membrane at 220-290 °C temperature and 2-6 bar pressure ranges. A CO conversion higher than the thermodynamic equilibrium of a traditional reactor was obtained. The best result, 95% CO conversion, was achieved at 4 bar and 280 °C. The membrane was also characterized in terms of permeance and selectivity by means of permeation tests carried out before and after reaction. In addition, permeance and separation factor were also measured during the reaction. Permeance of all species (H2: 9.7-29; CO: 0.3-1.1; CO2: 0.4-1.5 nmol/m2 s Pa), selectivity (H2/CO, H2/CO2 and H2/N2) ranging from 15 to 40 and separation factors (H2/CO = 20-45), showed no dependence on the related permeation driving force. Differences between selectivity and separation factor were registered. Furthermore, no inhibition effects of other gases on the hydrogen flux were observed. The membrane was prepared by the soaking roller procedure depositing a silica layer on a stainless steel support with an intermediate -alumina layer. The membrane reactor allowing selective hydrogen permeation presents a good performance exceeding also the equilibrium conversion of a traditional reactor.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Guangxi Dong; Ju Sung Kim; Giuseppe Barbieri; Enrica Fontananova; Young Moo Lee; Maurizio Cersosimo; Enrico Drioli; Adele Brunetti;Abstract In this work, the aging behavior of a thermally rearranged polybenzoxazole-co-imide (TR-PBOI) mixed matrix membrane loaded with 0.5 wt.% of oxidized multi-wall carbon nanotubes (MWCNT) was evaluated and then compared to a pure TR polymeric membrane prepared from the same precursor. To the best of authors knowledge, this is the first report of a mixed matrix membrane being prepared through the dispersion of MWCNTs within a thermally rearranged polymer matrix for CO2 separation. Microporous structures were created in both membranes when thermally rearranged at 375 °C, facilitating fast mass transfer ideal for membrane gas separation. The TR mixed matrix membrane with oxidized CNTs demonstrated improved separation properties with regard to both permeability and selectivity compared to the pure TR polymeric membrane due to a greater degree of thermal rearrangement (11.3%) than what was exhibited by the TR membrane (6.7%). Moreover, the high CO2 solubility typical of TR polymers coupled with diffusivity enhancements improved the CO2/N2 selectivity. The addition of oxidized CNTs to the TR-PBOI polymer did not significantly influence the aging behavior of the mixed matrix membrane. Both pure TR-PBOI and mixed matrix membranes exhibited an increase in CO2 selectivity due to physical aging. The improved separation properties in conjunction with an unchanged membrane stability over time suggested that the addition of CNTs to pure TR membranes could be an excellent approach toward improving the performance of thermally rearranged membranes applied toward gas separation.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:MIURMIURAdele Brunetti; Enrico Drioli; Enrico Drioli; Giuseppe Barbieri; Yu Sun; Alessio Caravella;The separation of biogas leads to not only recovery and sequestration of CO2, but also to much greater purification and recovery of value-added CH4 able to be used, for example, to directly feed pipelines for domestic or small plants. In this work, an alternative approach for a preliminary design of separation process based on the use of polymeric membranes is proposed. Two different types of polymeric membranes were taken into account, Hyflon AD60 and Matrimid 5218, the first showing a higher permeability with respect to other membranes but a quite low selectivity (12.9), the second exhibiting a higher selectivity with respect to other membranes (41 and 100) even though a lower permeability. Four possible operation schemes using two different types of membranes in multistage configuration system are analysed as functions of the main design parameters, i.e., pressure ratio and permeation number. The achieved results are compared with certain targets and are also discussed in terms of process metrics, according to the Process Intensification strategy. This latter analysis, coupled with a conventional one, provides an alternative point of view over the evaluation of the plant performance taking into account not only the final characteristics of the streams but also process efficiency, exploitation of raw material and energy, and the footprint occupied by the installation.
CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Giuseppe Barbieri; Enrico Drioli; Enrico Drioli; Kas Hemmes; Young Moo Lee; Hans de Wit;The development of fuel cells has seen rapid progress with the interest of car manufacturers for in particular in the polymer fuel cells at the end of the 1990s. But also other types of fuel cells have made important steps towards commercialization. This paper provides the state of the art of the most important fuel cell technologies and moreover provides new design concepts, integrated use of novel materials and how fuel cells can be integrated in the chemical industry and in larger energy providing systems using renewables. In this paper we follow two lines of discussion. The first deals with the need for more efficient fuel cells by improving material and component properties and the second deals with integration of various technologies and functions in a full systems approach. The first approach is more relevant for low temperature fuel cells while the second is more suited for new developments in high temperature fuel cells.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Adele Brunetti; K.-H. Lee; D.-W. Lee; Enrico Drioli; Bongkuk Sea; Giuseppe Barbieri;Water gas shift reaction for hydrogen production was studied in a catalytic membrane reactor using a supported silica membrane at 220-290 °C temperature and 2-6 bar pressure ranges. A CO conversion higher than the thermodynamic equilibrium of a traditional reactor was obtained. The best result, 95% CO conversion, was achieved at 4 bar and 280 °C. The membrane was also characterized in terms of permeance and selectivity by means of permeation tests carried out before and after reaction. In addition, permeance and separation factor were also measured during the reaction. Permeance of all species (H2: 9.7-29; CO: 0.3-1.1; CO2: 0.4-1.5 nmol/m2 s Pa), selectivity (H2/CO, H2/CO2 and H2/N2) ranging from 15 to 40 and separation factors (H2/CO = 20-45), showed no dependence on the related permeation driving force. Differences between selectivity and separation factor were registered. Furthermore, no inhibition effects of other gases on the hydrogen flux were observed. The membrane was prepared by the soaking roller procedure depositing a silica layer on a stainless steel support with an intermediate -alumina layer. The membrane reactor allowing selective hydrogen permeation presents a good performance exceeding also the equilibrium conversion of a traditional reactor.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2006.05.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Guangxi Dong; Ju Sung Kim; Giuseppe Barbieri; Enrica Fontananova; Young Moo Lee; Maurizio Cersosimo; Enrico Drioli; Adele Brunetti;Abstract In this work, the aging behavior of a thermally rearranged polybenzoxazole-co-imide (TR-PBOI) mixed matrix membrane loaded with 0.5 wt.% of oxidized multi-wall carbon nanotubes (MWCNT) was evaluated and then compared to a pure TR polymeric membrane prepared from the same precursor. To the best of authors knowledge, this is the first report of a mixed matrix membrane being prepared through the dispersion of MWCNTs within a thermally rearranged polymer matrix for CO2 separation. Microporous structures were created in both membranes when thermally rearranged at 375 °C, facilitating fast mass transfer ideal for membrane gas separation. The TR mixed matrix membrane with oxidized CNTs demonstrated improved separation properties with regard to both permeability and selectivity compared to the pure TR polymeric membrane due to a greater degree of thermal rearrangement (11.3%) than what was exhibited by the TR membrane (6.7%). Moreover, the high CO2 solubility typical of TR polymers coupled with diffusivity enhancements improved the CO2/N2 selectivity. The addition of oxidized CNTs to the TR-PBOI polymer did not significantly influence the aging behavior of the mixed matrix membrane. Both pure TR-PBOI and mixed matrix membranes exhibited an increase in CO2 selectivity due to physical aging. The improved separation properties in conjunction with an unchanged membrane stability over time suggested that the addition of CNTs to pure TR membranes could be an excellent approach toward improving the performance of thermally rearranged membranes applied toward gas separation.
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2017.03.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Funded by:MIURMIURAdele Brunetti; Enrico Drioli; Enrico Drioli; Giuseppe Barbieri; Yu Sun; Alessio Caravella;The separation of biogas leads to not only recovery and sequestration of CO2, but also to much greater purification and recovery of value-added CH4 able to be used, for example, to directly feed pipelines for domestic or small plants. In this work, an alternative approach for a preliminary design of separation process based on the use of polymeric membranes is proposed. Two different types of polymeric membranes were taken into account, Hyflon AD60 and Matrimid 5218, the first showing a higher permeability with respect to other membranes but a quite low selectivity (12.9), the second exhibiting a higher selectivity with respect to other membranes (41 and 100) even though a lower permeability. Four possible operation schemes using two different types of membranes in multistage configuration system are analysed as functions of the main design parameters, i.e., pressure ratio and permeation number. The achieved results are compared with certain targets and are also discussed in terms of process metrics, according to the Process Intensification strategy. This latter analysis, coupled with a conventional one, provides an alternative point of view over the evaluation of the plant performance taking into account not only the final characteristics of the streams but also process efficiency, exploitation of raw material and energy, and the footprint occupied by the installation.
CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.01.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Giuseppe Barbieri; Enrico Drioli; Enrico Drioli; Kas Hemmes; Young Moo Lee; Hans de Wit;The development of fuel cells has seen rapid progress with the interest of car manufacturers for in particular in the polymer fuel cells at the end of the 1990s. But also other types of fuel cells have made important steps towards commercialization. This paper provides the state of the art of the most important fuel cell technologies and moreover provides new design concepts, integrated use of novel materials and how fuel cells can be integrated in the chemical industry and in larger energy providing systems using renewables. In this paper we follow two lines of discussion. The first deals with the need for more efficient fuel cells by improving material and component properties and the second deals with integration of various technologies and functions in a full systems approach. The first approach is more relevant for low temperature fuel cells while the second is more suited for new developments in high temperature fuel cells.
CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Chemical Engineering and Processing - Process IntensificationArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefChemical Engineering and Processing - Process IntensificationJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cep.2011.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu