- home
- Advanced Search
- Energy Research
- 2021-2025
- Closed Access
- Open Source
- KR
- Energy Research
- 2021-2025
- Closed Access
- Open Source
- KR
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Heng Liang Zhang; Heng Liang Zhang; Hyung Hee Cho; Dan Mei Xie; Geehong Choi; Seonho Kim;Abstract The accurate information of the thermal stresses and temperature in isotropic elastic solids is the key for many engineering applications. At present the classical linear coupled theory of thermoelasticity deduced with the assumptions of small temperature changes is widely used to solve the thermoelastic problems in engineering. In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. The effect of large temperature changes on the solutions of thermoelastic problems is discussed. For the heat transfer process, if the isotropic elastic solids will expand when heated and contract when cooled and the condition d E E d T · σ i j E − δ i j 1 − 2 ν α 0 can be met in the context of small deformations, the effect of large temperature changes can be regarded as increasing the specific heat. The proposed models are applied to solve two thermoelastic problems. From the obtained numerical results, the effect of large temperature changes will increase with the amplitude of temperature change and may be considerably even when the temperature changes slowly.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Heng Liang Zhang; Heng Liang Zhang; Hyung Hee Cho; Dan Mei Xie; Geehong Choi; Seonho Kim;Abstract The accurate information of the thermal stresses and temperature in isotropic elastic solids is the key for many engineering applications. At present the classical linear coupled theory of thermoelasticity deduced with the assumptions of small temperature changes is widely used to solve the thermoelastic problems in engineering. In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. The effect of large temperature changes on the solutions of thermoelastic problems is discussed. For the heat transfer process, if the isotropic elastic solids will expand when heated and contract when cooled and the condition d E E d T · σ i j E − δ i j 1 − 2 ν α 0 can be met in the context of small deformations, the effect of large temperature changes can be regarded as increasing the specific heat. The proposed models are applied to solve two thermoelastic problems. From the obtained numerical results, the effect of large temperature changes will increase with the amplitude of temperature change and may be considerably even when the temperature changes slowly.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Ikram Mehrez; Gopalakrishnan Kumar; Sang Hyoun Kim; Kuppam Chandrasekhar;Abstract Date biomass is a carbon-rich renewable resource that can be considered a potential carbon-rich substrate for energy generation over anaerobic digestion (AD). However, due to its complex nature, appropriate pretreatment is necessary to achieve a higher methane yield. Hence, the current study was envisioned to evaluate the influence of three different pretreatment strategies, namely acid, alkali, and hydrothermal pretreatment on biochemical methane potential (BMP) of seven diverse sorts of Algerian date biomass, namely Pedicels, Fibrilium, Petiole, Fruit bunch, Spath, Palm, and its mixture. Among all the pretreatment conditions, alkaline pretreatment highly influenced the lignin composition of date biomass and showed higher BMP. Among all sorts of biomass, higher BMP was detected through Palm as 295.9 mL CH4/g-TS, whereas the lowest BMP values were recorded with Petiole as 226.74 mL CH4/g-TS. Among all the experimental variations, ammonium pretreated Palm biomass documented the highest substrate conversion efficiency (63.80%), which correlates well with the observed higher BMP values. Nevertheless, there was a very marginal improvement in BMP detected in the case of other pretreatment strategies compared to alkaline pretreatment. This might be due to the efficacy of the applied pretreatment method on delignification of date biomass.
Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Ikram Mehrez; Gopalakrishnan Kumar; Sang Hyoun Kim; Kuppam Chandrasekhar;Abstract Date biomass is a carbon-rich renewable resource that can be considered a potential carbon-rich substrate for energy generation over anaerobic digestion (AD). However, due to its complex nature, appropriate pretreatment is necessary to achieve a higher methane yield. Hence, the current study was envisioned to evaluate the influence of three different pretreatment strategies, namely acid, alkali, and hydrothermal pretreatment on biochemical methane potential (BMP) of seven diverse sorts of Algerian date biomass, namely Pedicels, Fibrilium, Petiole, Fruit bunch, Spath, Palm, and its mixture. Among all the pretreatment conditions, alkaline pretreatment highly influenced the lignin composition of date biomass and showed higher BMP. Among all sorts of biomass, higher BMP was detected through Palm as 295.9 mL CH4/g-TS, whereas the lowest BMP values were recorded with Petiole as 226.74 mL CH4/g-TS. Among all the experimental variations, ammonium pretreated Palm biomass documented the highest substrate conversion efficiency (63.80%), which correlates well with the observed higher BMP values. Nevertheless, there was a very marginal improvement in BMP detected in the case of other pretreatment strategies compared to alkaline pretreatment. This might be due to the efficacy of the applied pretreatment method on delignification of date biomass.
Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Su Sang Yu; Tae Hoon Lee; Taek Hyun Oh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Su Sang Yu; Tae Hoon Lee; Taek Hyun Oh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Authors: Lakshmi Vijaya; Sruthi Suresh; Rajkumar Patel; E. Bhoje Gowd;pmid: 36282095
Polymer-based multicolor emissive materials have growing demand due to their potential applications in various fields such as full-color displays, bioimaging, and light sources because of their processability and high stability. Herein, we report dual-color emissive hybrid materials based on biocompatible poly(l-lactide) and polyethylene glycol-modified two-dimensional layered double hydroxide quantum dots (PEG-LDHQDs). The morphology of polymer films tunes the spatial distribution of QDs within the polymer matrix, modulating the energy transfer between the QDs and affording the dual emission behavior in the aggregated states. The amorphous hybrid films show single emission (blue) from the finely dispersed QDs (mostly isolated) within the polymer matrix. In contrast, dual emission (blue and red) was observed when the polymer was crystallized due to the possible accumulation of QDs at the interface of crystalline and amorphous phases in the lamellar structure. Furthermore, the dual emission could be enhanced by the aggregation of QDs on the pores of the breath figure pattern constructed on the surface of the hybrid film.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Authors: Lakshmi Vijaya; Sruthi Suresh; Rajkumar Patel; E. Bhoje Gowd;pmid: 36282095
Polymer-based multicolor emissive materials have growing demand due to their potential applications in various fields such as full-color displays, bioimaging, and light sources because of their processability and high stability. Herein, we report dual-color emissive hybrid materials based on biocompatible poly(l-lactide) and polyethylene glycol-modified two-dimensional layered double hydroxide quantum dots (PEG-LDHQDs). The morphology of polymer films tunes the spatial distribution of QDs within the polymer matrix, modulating the energy transfer between the QDs and affording the dual emission behavior in the aggregated states. The amorphous hybrid films show single emission (blue) from the finely dispersed QDs (mostly isolated) within the polymer matrix. In contrast, dual emission (blue and red) was observed when the polymer was crystallized due to the possible accumulation of QDs at the interface of crystalline and amorphous phases in the lamellar structure. Furthermore, the dual emission could be enhanced by the aggregation of QDs on the pores of the breath figure pattern constructed on the surface of the hybrid film.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; Jung Hun Kwak; Gi Won Shin; Hee Tae Kwon; Gi-Chung Kwon; Woo-Jae Kim; Byung-Hyang Kwon; J. H. Kim;Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.
Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; Jung Hun Kwak; Gi Won Shin; Hee Tae Kwon; Gi-Chung Kwon; Woo-Jae Kim; Byung-Hyang Kwon; J. H. Kim;Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.
Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Haider Niaz; Moonyong Lee; Rofice Dickson; Rofice Dickson; Amin Khan; J. Jay Liu; Syed Fahad Ali Shah; Muhammad Abdul Qyyum;Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Haider Niaz; Moonyong Lee; Rofice Dickson; Rofice Dickson; Amin Khan; J. Jay Liu; Syed Fahad Ali Shah; Muhammad Abdul Qyyum;Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ayyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; +1 AuthorsAyyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; Wei-Hsin, Chen;pmid: 36587772
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ayyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; +1 AuthorsAyyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; Wei-Hsin, Chen;pmid: 36587772
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Asim Ali Yaqoob; Muhammad Arshiq Bin Abu Bakar; Hyun-Chul Kim; Akil Ahmad; Mohammed B. Alshammari; Amira Suriaty Yaakop;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Asim Ali Yaqoob; Muhammad Arshiq Bin Abu Bakar; Hyun-Chul Kim; Akil Ahmad; Mohammed B. Alshammari; Amira Suriaty Yaakop;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Heng Liang Zhang; Heng Liang Zhang; Hyung Hee Cho; Dan Mei Xie; Geehong Choi; Seonho Kim;Abstract The accurate information of the thermal stresses and temperature in isotropic elastic solids is the key for many engineering applications. At present the classical linear coupled theory of thermoelasticity deduced with the assumptions of small temperature changes is widely used to solve the thermoelastic problems in engineering. In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. The effect of large temperature changes on the solutions of thermoelastic problems is discussed. For the heat transfer process, if the isotropic elastic solids will expand when heated and contract when cooled and the condition d E E d T · σ i j E − δ i j 1 − 2 ν α 0 can be met in the context of small deformations, the effect of large temperature changes can be regarded as increasing the specific heat. The proposed models are applied to solve two thermoelastic problems. From the obtained numerical results, the effect of large temperature changes will increase with the amplitude of temperature change and may be considerably even when the temperature changes slowly.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Heng Liang Zhang; Heng Liang Zhang; Hyung Hee Cho; Dan Mei Xie; Geehong Choi; Seonho Kim;Abstract The accurate information of the thermal stresses and temperature in isotropic elastic solids is the key for many engineering applications. At present the classical linear coupled theory of thermoelasticity deduced with the assumptions of small temperature changes is widely used to solve the thermoelastic problems in engineering. In this paper, to describe the thermoelastic behavior in isotropic solids undergoing large temperature changes more accurately, the novel coupled models of thermoelasticity and the corresponding finite element models have been presented explicitly and validated by experimental measurement. The effect of large temperature changes on the solutions of thermoelastic problems is discussed. For the heat transfer process, if the isotropic elastic solids will expand when heated and contract when cooled and the condition d E E d T · σ i j E − δ i j 1 − 2 ν α 0 can be met in the context of small deformations, the effect of large temperature changes can be regarded as increasing the specific heat. The proposed models are applied to solve two thermoelastic problems. From the obtained numerical results, the effect of large temperature changes will increase with the amplitude of temperature change and may be considerably even when the temperature changes slowly.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2021.121576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Ikram Mehrez; Gopalakrishnan Kumar; Sang Hyoun Kim; Kuppam Chandrasekhar;Abstract Date biomass is a carbon-rich renewable resource that can be considered a potential carbon-rich substrate for energy generation over anaerobic digestion (AD). However, due to its complex nature, appropriate pretreatment is necessary to achieve a higher methane yield. Hence, the current study was envisioned to evaluate the influence of three different pretreatment strategies, namely acid, alkali, and hydrothermal pretreatment on biochemical methane potential (BMP) of seven diverse sorts of Algerian date biomass, namely Pedicels, Fibrilium, Petiole, Fruit bunch, Spath, Palm, and its mixture. Among all the pretreatment conditions, alkaline pretreatment highly influenced the lignin composition of date biomass and showed higher BMP. Among all sorts of biomass, higher BMP was detected through Palm as 295.9 mL CH4/g-TS, whereas the lowest BMP values were recorded with Petiole as 226.74 mL CH4/g-TS. Among all the experimental variations, ammonium pretreated Palm biomass documented the highest substrate conversion efficiency (63.80%), which correlates well with the observed higher BMP values. Nevertheless, there was a very marginal improvement in BMP detected in the case of other pretreatment strategies compared to alkaline pretreatment. This might be due to the efficacy of the applied pretreatment method on delignification of date biomass.
Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Ikram Mehrez; Gopalakrishnan Kumar; Sang Hyoun Kim; Kuppam Chandrasekhar;Abstract Date biomass is a carbon-rich renewable resource that can be considered a potential carbon-rich substrate for energy generation over anaerobic digestion (AD). However, due to its complex nature, appropriate pretreatment is necessary to achieve a higher methane yield. Hence, the current study was envisioned to evaluate the influence of three different pretreatment strategies, namely acid, alkali, and hydrothermal pretreatment on biochemical methane potential (BMP) of seven diverse sorts of Algerian date biomass, namely Pedicels, Fibrilium, Petiole, Fruit bunch, Spath, Palm, and its mixture. Among all the pretreatment conditions, alkaline pretreatment highly influenced the lignin composition of date biomass and showed higher BMP. Among all sorts of biomass, higher BMP was detected through Palm as 295.9 mL CH4/g-TS, whereas the lowest BMP values were recorded with Petiole as 226.74 mL CH4/g-TS. Among all the experimental variations, ammonium pretreated Palm biomass documented the highest substrate conversion efficiency (63.80%), which correlates well with the observed higher BMP values. Nevertheless, there was a very marginal improvement in BMP detected in the case of other pretreatment strategies compared to alkaline pretreatment. This might be due to the efficacy of the applied pretreatment method on delignification of date biomass.
Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental Chemical EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jece.2021.106031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Su Sang Yu; Tae Hoon Lee; Taek Hyun Oh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Su Sang Yu; Tae Hoon Lee; Taek Hyun Oh;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.123151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Authors: Lakshmi Vijaya; Sruthi Suresh; Rajkumar Patel; E. Bhoje Gowd;pmid: 36282095
Polymer-based multicolor emissive materials have growing demand due to their potential applications in various fields such as full-color displays, bioimaging, and light sources because of their processability and high stability. Herein, we report dual-color emissive hybrid materials based on biocompatible poly(l-lactide) and polyethylene glycol-modified two-dimensional layered double hydroxide quantum dots (PEG-LDHQDs). The morphology of polymer films tunes the spatial distribution of QDs within the polymer matrix, modulating the energy transfer between the QDs and affording the dual emission behavior in the aggregated states. The amorphous hybrid films show single emission (blue) from the finely dispersed QDs (mostly isolated) within the polymer matrix. In contrast, dual emission (blue and red) was observed when the polymer was crystallized due to the possible accumulation of QDs at the interface of crystalline and amorphous phases in the lamellar structure. Furthermore, the dual emission could be enhanced by the aggregation of QDs on the pores of the breath figure pattern constructed on the surface of the hybrid film.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Authors: Lakshmi Vijaya; Sruthi Suresh; Rajkumar Patel; E. Bhoje Gowd;pmid: 36282095
Polymer-based multicolor emissive materials have growing demand due to their potential applications in various fields such as full-color displays, bioimaging, and light sources because of their processability and high stability. Herein, we report dual-color emissive hybrid materials based on biocompatible poly(l-lactide) and polyethylene glycol-modified two-dimensional layered double hydroxide quantum dots (PEG-LDHQDs). The morphology of polymer films tunes the spatial distribution of QDs within the polymer matrix, modulating the energy transfer between the QDs and affording the dual emission behavior in the aggregated states. The amorphous hybrid films show single emission (blue) from the finely dispersed QDs (mostly isolated) within the polymer matrix. In contrast, dual emission (blue and red) was observed when the polymer was crystallized due to the possible accumulation of QDs at the interface of crystalline and amorphous phases in the lamellar structure. Furthermore, the dual emission could be enhanced by the aggregation of QDs on the pores of the breath figure pattern constructed on the surface of the hybrid film.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsmacrolett.2c00428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; Jung Hun Kwak; Gi Won Shin; Hee Tae Kwon; Gi-Chung Kwon; Woo-Jae Kim; Byung-Hyang Kwon; J. H. Kim;Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.
Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Yeon Soo Park; In Young Bang; Yongjun Cho; Min Ho Kang; Jung Hun Kwak; Gi Won Shin; Hee Tae Kwon; Gi-Chung Kwon; Woo-Jae Kim; Byung-Hyang Kwon; J. H. Kim;Reactive ion etching of silicon oxide and silicon nitride was conducted by the injection of nitrogen trifluoride (NF3) and nitrogen oxide trifluoride gas (F3NO). The etching process was studied using a residual gas analyzer (RGA) and optical emission spectroscopy (OES); this included confirming and comparing the characteristics of the F3NO plasma to that of the NF3 plasma by discharging and measuring the pure NF3 plasma and F3NO plasma. Furthermore, silicon oxide and silicon nitride etching were performed using a process gas (NF3, F3NO) and an argon mixture. The plasma etching process was similarly diagnosed by RGA and OES, and the etch rate was calculated by measuring the reflection. The etch rate of silicon oxide during F3NO/Ar plasma etching is approximately 94% of that for NF3/Ar plasma etching and the etch rate of silicon nitride is approximately 76% of that for NF3/Ar plasma etching under the same conditions. The RGA and OES measurements confirmed that more O+, NO+, and O2+ ions were generated in the F3NO plasma than in the NF3 plasma. This difference makes it possible to confirm the variation in etch rates between silicon oxide and silicon nitride.
Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Korea... arrow_drop_down Journal of the Korean Physical SocietyArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40042-021-00242-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Haider Niaz; Moonyong Lee; Rofice Dickson; Rofice Dickson; Amin Khan; J. Jay Liu; Syed Fahad Ali Shah; Muhammad Abdul Qyyum;Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Haider Niaz; Moonyong Lee; Rofice Dickson; Rofice Dickson; Amin Khan; J. Jay Liu; Syed Fahad Ali Shah; Muhammad Abdul Qyyum;Abstract Hydrogen is considered a potential game changer for world energy systems and a solution to climate change concerns, as it generates zero waste and it is suited for power generation and transportation. Despite its several advantages, there are significant technical challenges in deploying a stable hydrogen economy including improving its process efficiencies, lowering production costs, maintaining cost-effective transmission and distribution, and exploiting inexpensive and sustainable feedstocks. In this context, a detailed study was conducted to analyze the production sources, technologies, storage and transport systems, and global potential exportable feedstocks to produce hydrogen. A comprehensive analysis of current hydrogen production technologies with their energy efficiencies and hydrogen selling prices was reported in this study. Various hydrogen production technologies with their capital investments and CO2 emissions were also presented. Potential feedstocks for hydrogen production were identified and analyzed through a product space model, which characterizes a network of global exportable products based on their similarities and productive knowledge. It was established that the hydrogen production feedstocks and sources currently used are primarily available in six countries: the United States of America, France, Russia, Sweden, the Netherlands, and Spain. Broadly, the results revealed that the United States of America and Russia shared the highest hydrogen feedstock exports, indicating a higher probability of hydrogen production in these countries. Except for Russia, all the studied countries fell in the most desired quadrant, indicating that they can move in all product space directions to exploit unexplored hydrogen feedstocks for better sustainable economic growth.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.110843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ayyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; +1 AuthorsAyyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; Wei-Hsin, Chen;pmid: 36587772
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Ayyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; +1 AuthorsAyyadurai, Saravanakumar; Pradeshwaran, Vijayakumar; Anh Tuan, Hoang; Eilhann E, Kwon; Wei-Hsin, Chen;pmid: 36587772
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2022.128562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Asim Ali Yaqoob; Muhammad Arshiq Bin Abu Bakar; Hyun-Chul Kim; Akil Ahmad; Mohammed B. Alshammari; Amira Suriaty Yaakop;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Asim Ali Yaqoob; Muhammad Arshiq Bin Abu Bakar; Hyun-Chul Kim; Akil Ahmad; Mohammed B. Alshammari; Amira Suriaty Yaakop;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu