- home
- Advanced Search
- Energy Research
- 2016-2025
- CA
- BE
- UA
- MA
- Energy Research
- 2016-2025
- CA
- BE
- UA
- MA
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCZhongshun Yuan; Hongwei Li; Hongwei Li; Chunbao (Charles) Xu; Qin Wei;Abstract Bio-based polyurethane (BPU) foams were successfully prepared using hydrothermally liquefied wheat straw (WS) to substitute a mass fraction of up to 50% of polyols. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize four process parameters: NCO/OH molar ratio, loading of crosslinking agent (glycerol), loading of catalyst (a mixture of triethylene diamine, stannous octoate, and triethanolamine), and loading of blowing agent (water) for the maximum compression strength of the rigid BPU foams. With the quadratic orthogonal regression model, verified by experimentation, the maximum compression strength of approximately 180 kPa was obtained at the following optimal conditions: NCO/OH molar ratio of 1.24:1, glycerol addition of 12.11%, catalyst loading of 0.76%, and blowing agent addition of 1.31% in relation to the total mass of polyols. The BPU foam prepared at the optimal conditions exhibits good thermal conductivity (0.045 Wm−1K−1) and thermal stability, comparable to those of a reference foam prepared with 100% PPG400.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: V. Ismet Ugursal; S. Rasoul Asaee; Ian Beausoleil-Morrison;Abstract Canada has numerous climatic and geographical regions and the Canadian housing stock (CHS) is diversified in terms of vintage, geometry, construction materials, envelope, occupancy, energy sources and heating, ventilation and air conditioning system and equipment. Therefore, strategies to achieve net zero energy (NZE) status with the current stock of houses need to be devised considering the unique characteristics of the housing stock, the economic conditions and energy mix available in each region. Identifying and assessing pathways for converting existing houses to NZE buildings at the housing stock level is a complex and multifaceted problem and requires extensive analysis on the impact of energy efficiency and renewable/alternative energy technology retrofits on the energy use and GHG emissions of households. A techno-economic analysis of retrofitting renewable/alternative energy technologies in the CHS to reduce energy consumption and GHG emissions was conducted to develop strategies to achieve or approach NZE status for Canadian houses. The results indicate that substantial energy savings and GHG emission reductions are techno-economically feasible for the CHS through careful selection of retrofit options. While achieving large scale conversion of existing houses to NZEB is not feasible, approaching NZE status is a realistic goal for a large percentage of Canadian houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Leah Feor; Dan Murray; Zachary Folger-Laronde; Amelia Clarke;Even with the benefits of sustainability and climate change reporting, there is limited information on how municipalities are reporting on performance for external stakeholders in comparison with private sector organizations. The purpose of this research was to gain an understanding of the current state of sustainability and climate change reporting at the local level and to investigate the extent to which municipalities across Ontario, Canada, report. We used content analysis to identify the presence or non-presence of information on the websites of 38 municipalities and analyzed the results using descriptive statistics. Our analysis showed that the sample municipalities were not widely reporting on sustainability or climate change performance. Also, we identified a gap between the number of plans and reports produced by sample municipalities, with the latter being less common, indicating a need for an improved evaluation of plan implementation. Further, we found that a provincial regulation that required municipalities to make their energy conservation and demand management plans public did not guarantee publication of the plan on a municipality’s website. This study contributes to the growing field of sustainability and climate change planning and reporting by local governments and offers empirical evidence specific to Ontario, Canada.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Armando M. Leite da Silva; Jose F. da Costa Castro; Roy Billinton;This work presents a new method to evaluate generation reserve margins in systems with renewable sources. In assessing the adequacy of generation reserve amounts, besides failures in generating units, their capacity intermittencies, unavailability, and capacity limits of the transmission system are duly considered. Risk indices are evaluated using quasi-sequential Monte Carlo simulation techniques. The cross-entropy method is used to treat rare events and also to identify critical equipment for operation in each scenario. The proposed method is applied to the original IEEE RTS system and to a modified configuration with insertion of wind power plants. A subsystem of the Brazilian interconnected network is also used to illustrate the practicality of the proposed method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jehangir Arshad; Ateeq Ur Rehman; Mohamed Tahar Ben Othman; Muhammad Ahmad; Hassaan Bin Tariq; Muhammad Abdullah Khalid; Muhammad Abdul Rehman Moosa; Muhammad Shafiq; Habib Hamam;doi: 10.3390/su14106249
This study aimed to realize Sustainable Development Goals (SDGs), i.e., no poverty, zero hunger, and sustainable cities and communities through the implementation of an intelligent cattle-monitoring system to enhance dairy production. Livestock industries in developing countries lack the technology that can directly impact meat and dairy products, where human resources are a major factor. This study proposed a novel, cost-effective, smart dairy-monitoring system by implementing intelligent wireless sensor nodes, the Internet of Things (IoT), and a Node-Micro controller Unit (Node-MCU). The proposed system comprises three modules, including an intelligent environmental parameter regularization system, a cow collar (equipped with a temperature sensor, a GPS module to locate the animal, and a stethoscope to update the heart rate), and an automatic water-filling unit for drinking water. Furthermore, a novel IoT-based front end has been developed to take data from prescribed modules and maintain a separate database for further analysis. The presented Wireless Sensor Nodes (WSNs) can intelligently determine the case of any instability in environmental parameters. Moreover, the cow collar is designed to obtain precise values of the temperature, heart rate, and accurate location of the animal. Additionally, auto-notification to the concerned party is a valuable addition developed in the cow collar design. It employed a plug-and-play design to provide ease in implementation. Moreover, automation reduces human intervention, hence labor costs are decreased when a farm has hundreds of animals. The proposed system also increases the production of dairy and meat products by improving animal health via the regularization of the environment and automated food and watering. The current study represents a comprehensive comparative analysis of the proposed implementation with the existing systems that validate the novelty of this work. This implementation can be further stretched for other applications, i.e., smart monitoring of zoo animals and poultry.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6249/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6249/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Lei Feng; Jiejie Sun; Yuanbao Shi; Guibin Wang; Tongli Wang;Camptotheca acuminata is considered a natural medicinal plant with antitumor activity. The assessment of climate change impact on its suitable habitats is important for cultivation and conservation. In this study, we applied a novel approach to build ecological niche models with both climate and soil variables while the confounding effects between the variables in the two categories were avoided. We found that the degree-days below zero and mean annual precipitation were the most important climatic factors, while the basic soil saturation, soil gravel volume percentage, and clay content were the main soil factors, determining the suitable habitats of C. acuminata. We found that suitable habitats of this species would moderately increase in future climates under both the RCP4.5 and RCP8.5 climate change scenarios for the 2020s, 2050s, and 2080s. However, substantial shifts among levels of habitat suitability were projected. The dual high-suitable habitats would expand, which would be favorable for commercial plantations. Our findings contribute to a better understanding of the impact of climate change on this species and provide a scientific basis for the cultivation and conservation purposes.
Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/8/891/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/8/891/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Nicolas Heymans; Emilie Courbon; Jacques Bougard; Oleksandr Skrylnyk; Marc Frère; Gilbert Descy;Abstract The work discusses a problem of harvesting and upgrading of ultra-low grade heat with thermochemical energy storage technology for space and domestic water heating in residential area. The laboratory scale prototype, operating on the principle of an open packed bed sorption reactor and using moist air as a heat/mass transfer fluid, is experimented. The range of experimental air temperature was set to 17–40 °C, which corresponds to the typical range of domestic waste thermal energy. The tested sorbent was a salt-in-matrix composite material composed of a silica gel containing 43 wt.% of calcium chloride (CaCl2) salt. Hygrothermal behavior and energy performances of the prototype control volume filled with 245 g of material, representing the reactive front of a thermal wave, were analyzed at constant inlet hydration conditions (water vapor pressure of 12.5 mbar). The average temperature lift was recorded as 9–13 °C, representing the amplification of a supplied heat on 23% – 75% depending on the inlet temperature. The average specific thermal power inside the material bed was measured to be 168–267 W kg-1. The apparent energy density, based on the prototype control volume, ranged between 1.0 and 1.6 GJ m-3. Taking into account the heat of water vaporization, the coefficient of performance of the process was determined to be 0.96–1.57.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Wei Peng; Omid Karimi Sadaghiani;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016 UkrainePublisher:КНТУ Authors: Muzychak, Аndrii;Необхідною передумовою впровадження енергоощадних заходів на підприємствах комунальної теплоенергетики, є проведення енергетичного аудиту. У процесі відбору та обґрунтування енергоощад-них заходів необхідно враховувати неповноту вхідної інформації. Фактор невизначеності враховано як одну зі складових методології побудови ефективних наближених математичних моделей підвищення енергоефективності систем теплопостачання. Запропонована методика дозволяє актуалізувати теплове навантаження будівель без проведення масштабних енергетичних обстежень. На кожному етапі аналізу та обґрунтування енергоощадних заходів запропоновано використати спеціалізоване програмне забезпечення. Identify the main stages of the energy audit of municipal heat power companies and develop a method for determining the thermal load of consumers under uncertainty input data. Features an energy audit of enterprises municipal heat power companies are reviewed. In the process of selection and substantiation of energy-saving measures must take into account the incomplete input information. For updating the heat load proposed to do a classification of all buildings and for typical buildings develop their heat balance. The calculation results are extended to other buildings of the same group. Only actual values of the heat load can analyze and optimize hydraulic and heat modes. At each stage of calculations proposed to use specialized software. In problem of determining the optimum mode is stored zone insufficient certainty so final decision accept expert. The technique allows optimize the modes of municipal heat power companies without large-scale energy audits and significant expenses of money and time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jingda Wu; Zhongbao Wei; Kailong Liu; Zhongyi Quan; Yunwei Li;Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCZhongshun Yuan; Hongwei Li; Hongwei Li; Chunbao (Charles) Xu; Qin Wei;Abstract Bio-based polyurethane (BPU) foams were successfully prepared using hydrothermally liquefied wheat straw (WS) to substitute a mass fraction of up to 50% of polyols. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize four process parameters: NCO/OH molar ratio, loading of crosslinking agent (glycerol), loading of catalyst (a mixture of triethylene diamine, stannous octoate, and triethanolamine), and loading of blowing agent (water) for the maximum compression strength of the rigid BPU foams. With the quadratic orthogonal regression model, verified by experimentation, the maximum compression strength of approximately 180 kPa was obtained at the following optimal conditions: NCO/OH molar ratio of 1.24:1, glycerol addition of 12.11%, catalyst loading of 0.76%, and blowing agent addition of 1.31% in relation to the total mass of polyols. The BPU foam prepared at the optimal conditions exhibits good thermal conductivity (0.045 Wm−1K−1) and thermal stability, comparable to those of a reference foam prepared with 100% PPG400.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: V. Ismet Ugursal; S. Rasoul Asaee; Ian Beausoleil-Morrison;Abstract Canada has numerous climatic and geographical regions and the Canadian housing stock (CHS) is diversified in terms of vintage, geometry, construction materials, envelope, occupancy, energy sources and heating, ventilation and air conditioning system and equipment. Therefore, strategies to achieve net zero energy (NZE) status with the current stock of houses need to be devised considering the unique characteristics of the housing stock, the economic conditions and energy mix available in each region. Identifying and assessing pathways for converting existing houses to NZE buildings at the housing stock level is a complex and multifaceted problem and requires extensive analysis on the impact of energy efficiency and renewable/alternative energy technology retrofits on the energy use and GHG emissions of households. A techno-economic analysis of retrofitting renewable/alternative energy technologies in the CHS to reduce energy consumption and GHG emissions was conducted to develop strategies to achieve or approach NZE status for Canadian houses. The results indicate that substantial energy savings and GHG emission reductions are techno-economically feasible for the CHS through careful selection of retrofit options. While achieving large scale conversion of existing houses to NZEB is not feasible, approaching NZE status is a realistic goal for a large percentage of Canadian houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Leah Feor; Dan Murray; Zachary Folger-Laronde; Amelia Clarke;Even with the benefits of sustainability and climate change reporting, there is limited information on how municipalities are reporting on performance for external stakeholders in comparison with private sector organizations. The purpose of this research was to gain an understanding of the current state of sustainability and climate change reporting at the local level and to investigate the extent to which municipalities across Ontario, Canada, report. We used content analysis to identify the presence or non-presence of information on the websites of 38 municipalities and analyzed the results using descriptive statistics. Our analysis showed that the sample municipalities were not widely reporting on sustainability or climate change performance. Also, we identified a gap between the number of plans and reports produced by sample municipalities, with the latter being less common, indicating a need for an improved evaluation of plan implementation. Further, we found that a provincial regulation that required municipalities to make their energy conservation and demand management plans public did not guarantee publication of the plan on a municipality’s website. This study contributes to the growing field of sustainability and climate change planning and reporting by local governments and offers empirical evidence specific to Ontario, Canada.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Armando M. Leite da Silva; Jose F. da Costa Castro; Roy Billinton;This work presents a new method to evaluate generation reserve margins in systems with renewable sources. In assessing the adequacy of generation reserve amounts, besides failures in generating units, their capacity intermittencies, unavailability, and capacity limits of the transmission system are duly considered. Risk indices are evaluated using quasi-sequential Monte Carlo simulation techniques. The cross-entropy method is used to treat rare events and also to identify critical equipment for operation in each scenario. The proposed method is applied to the original IEEE RTS system and to a modified configuration with insertion of wind power plants. A subsystem of the Brazilian interconnected network is also used to illustrate the practicality of the proposed method.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Jehangir Arshad; Ateeq Ur Rehman; Mohamed Tahar Ben Othman; Muhammad Ahmad; Hassaan Bin Tariq; Muhammad Abdullah Khalid; Muhammad Abdul Rehman Moosa; Muhammad Shafiq; Habib Hamam;doi: 10.3390/su14106249
This study aimed to realize Sustainable Development Goals (SDGs), i.e., no poverty, zero hunger, and sustainable cities and communities through the implementation of an intelligent cattle-monitoring system to enhance dairy production. Livestock industries in developing countries lack the technology that can directly impact meat and dairy products, where human resources are a major factor. This study proposed a novel, cost-effective, smart dairy-monitoring system by implementing intelligent wireless sensor nodes, the Internet of Things (IoT), and a Node-Micro controller Unit (Node-MCU). The proposed system comprises three modules, including an intelligent environmental parameter regularization system, a cow collar (equipped with a temperature sensor, a GPS module to locate the animal, and a stethoscope to update the heart rate), and an automatic water-filling unit for drinking water. Furthermore, a novel IoT-based front end has been developed to take data from prescribed modules and maintain a separate database for further analysis. The presented Wireless Sensor Nodes (WSNs) can intelligently determine the case of any instability in environmental parameters. Moreover, the cow collar is designed to obtain precise values of the temperature, heart rate, and accurate location of the animal. Additionally, auto-notification to the concerned party is a valuable addition developed in the cow collar design. It employed a plug-and-play design to provide ease in implementation. Moreover, automation reduces human intervention, hence labor costs are decreased when a farm has hundreds of animals. The proposed system also increases the production of dairy and meat products by improving animal health via the regularization of the environment and automated food and watering. The current study represents a comprehensive comparative analysis of the proposed implementation with the existing systems that validate the novelty of this work. This implementation can be further stretched for other applications, i.e., smart monitoring of zoo animals and poultry.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6249/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/10/6249/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:MDPI AG Lei Feng; Jiejie Sun; Yuanbao Shi; Guibin Wang; Tongli Wang;Camptotheca acuminata is considered a natural medicinal plant with antitumor activity. The assessment of climate change impact on its suitable habitats is important for cultivation and conservation. In this study, we applied a novel approach to build ecological niche models with both climate and soil variables while the confounding effects between the variables in the two categories were avoided. We found that the degree-days below zero and mean annual precipitation were the most important climatic factors, while the basic soil saturation, soil gravel volume percentage, and clay content were the main soil factors, determining the suitable habitats of C. acuminata. We found that suitable habitats of this species would moderately increase in future climates under both the RCP4.5 and RCP8.5 climate change scenarios for the 2020s, 2050s, and 2080s. However, substantial shifts among levels of habitat suitability were projected. The dual high-suitable habitats would expand, which would be favorable for commercial plantations. Our findings contribute to a better understanding of the impact of climate change on this species and provide a scientific basis for the cultivation and conservation purposes.
Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/8/891/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Forests arrow_drop_down ForestsOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/8/891/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Nicolas Heymans; Emilie Courbon; Jacques Bougard; Oleksandr Skrylnyk; Marc Frère; Gilbert Descy;Abstract The work discusses a problem of harvesting and upgrading of ultra-low grade heat with thermochemical energy storage technology for space and domestic water heating in residential area. The laboratory scale prototype, operating on the principle of an open packed bed sorption reactor and using moist air as a heat/mass transfer fluid, is experimented. The range of experimental air temperature was set to 17–40 °C, which corresponds to the typical range of domestic waste thermal energy. The tested sorbent was a salt-in-matrix composite material composed of a silica gel containing 43 wt.% of calcium chloride (CaCl2) salt. Hygrothermal behavior and energy performances of the prototype control volume filled with 245 g of material, representing the reactive front of a thermal wave, were analyzed at constant inlet hydration conditions (water vapor pressure of 12.5 mbar). The average temperature lift was recorded as 9–13 °C, representing the amplification of a supplied heat on 23% – 75% depending on the inlet temperature. The average specific thermal power inside the material bed was measured to be 168–267 W kg-1. The apparent energy density, based on the prototype control volume, ranged between 1.0 and 1.6 GJ m-3. Taking into account the heat of water vaporization, the coefficient of performance of the process was determined to be 0.96–1.57.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Wei Peng; Omid Karimi Sadaghiani;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016 UkrainePublisher:КНТУ Authors: Muzychak, Аndrii;Необхідною передумовою впровадження енергоощадних заходів на підприємствах комунальної теплоенергетики, є проведення енергетичного аудиту. У процесі відбору та обґрунтування енергоощад-них заходів необхідно враховувати неповноту вхідної інформації. Фактор невизначеності враховано як одну зі складових методології побудови ефективних наближених математичних моделей підвищення енергоефективності систем теплопостачання. Запропонована методика дозволяє актуалізувати теплове навантаження будівель без проведення масштабних енергетичних обстежень. На кожному етапі аналізу та обґрунтування енергоощадних заходів запропоновано використати спеціалізоване програмне забезпечення. Identify the main stages of the energy audit of municipal heat power companies and develop a method for determining the thermal load of consumers under uncertainty input data. Features an energy audit of enterprises municipal heat power companies are reviewed. In the process of selection and substantiation of energy-saving measures must take into account the incomplete input information. For updating the heat load proposed to do a classification of all buildings and for typical buildings develop their heat balance. The calculation results are extended to other buildings of the same group. Only actual values of the heat load can analyze and optimize hydraulic and heat modes. At each stage of calculations proposed to use specialized software. In problem of determining the optimum mode is stored zone insufficient certainty so final decision accept expert. The technique allows optimize the modes of municipal heat power companies without large-scale energy audits and significant expenses of money and time.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jingda Wu; Zhongbao Wei; Kailong Liu; Zhongyi Quan; Yunwei Li;Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
