- home
- Advanced Search
- Energy Research
- 7. Clean energy
- AU
- NL
- Energy Research
- 7. Clean energy
- AU
- NL
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECASolomon Assefa Wassie; Michele Colozzi; Fausto Gallucci; Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECASolomon Assefa Wassie; Michele Colozzi; Fausto Gallucci; Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United Kingdom, AustraliaPublisher:Elsevier BV Rahman Saidur; Rahman Saidur; Devarajan Ramasamy; Mahendran Samykano; K. Farhana; K. Farhana; Hussein A. Mohammed; Kumaran Kadirgama;Abstract The upward energy demand, along with the depletion of conventional energy sources, demands improved utilization of renewable energy resources. Among all renewable energy resources, solar energy is the most appropriate alternative to conventional energy sources owing to its inexhaustibility and green property. Solar collectors are devices that convert solar radiation into heat or energy. However, the efficiency of the solar collector is still not adequate. The competent step to enhance the efficiency of the solar collector is to use nanofluids. This study is carried out different phases viz. characterization and stabilization while both qualitative and quantitative methods used to evaluate the stability of nanofluids thermophysical properties of Al2O3 and CNC nanofluids such as thermal conductivity measured at four different temperature using KD2 Pro, viscosity and specific heat determined at similar temperature range by viscometer and differential scanning calorimetry respectively. The experiment is executed with a fixed flow rate and in steady-state conditions under extensive solar radiation. The experimental study has revealed that up to 2.48% and 8.46% efficiency of solar collector enhanced by using 0.5% Al2O3 and 0.5% CNC nanofluids respectively. Moreover, nanofluids show good to moderate stability performance. Besides, the thermal conductivity of nanofluids increased while viscosity is in a decreasing trend with increasing temperature. Nanofluids could enhance the efficiency of a flat-plate solar collector.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United Kingdom, AustraliaPublisher:Elsevier BV Rahman Saidur; Rahman Saidur; Devarajan Ramasamy; Mahendran Samykano; K. Farhana; K. Farhana; Hussein A. Mohammed; Kumaran Kadirgama;Abstract The upward energy demand, along with the depletion of conventional energy sources, demands improved utilization of renewable energy resources. Among all renewable energy resources, solar energy is the most appropriate alternative to conventional energy sources owing to its inexhaustibility and green property. Solar collectors are devices that convert solar radiation into heat or energy. However, the efficiency of the solar collector is still not adequate. The competent step to enhance the efficiency of the solar collector is to use nanofluids. This study is carried out different phases viz. characterization and stabilization while both qualitative and quantitative methods used to evaluate the stability of nanofluids thermophysical properties of Al2O3 and CNC nanofluids such as thermal conductivity measured at four different temperature using KD2 Pro, viscosity and specific heat determined at similar temperature range by viscometer and differential scanning calorimetry respectively. The experiment is executed with a fixed flow rate and in steady-state conditions under extensive solar radiation. The experimental study has revealed that up to 2.48% and 8.46% efficiency of solar collector enhanced by using 0.5% Al2O3 and 0.5% CNC nanofluids respectively. Moreover, nanofluids show good to moderate stability performance. Besides, the thermal conductivity of nanofluids increased while viscosity is in a decreasing trend with increasing temperature. Nanofluids could enhance the efficiency of a flat-plate solar collector.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Informa UK Limited Authors: Emil Jonescu; Titus Mercea; Khoa Do; Monty Sutrisna;handle: 1959.3/474041
Co-generation of energy derived from human movement is not new. Intentionally accumulating energy, from mass urban-mobility, provides opportunities to re-purpose power. However, when mass-mobility is predictable, yet not harnessed, this highlights critical gaps in application of interdisciplinary knowledge. This research highlights a novel application of geostatistical modelling for the built environment with the purpose of understanding where energy harvesting infrastructure should be located. The work presented argues that advanced Geostatistical methods can be implemented as an appropriate method to predict probability distribution, density, clustering of populations and mass-population mobility patterns from large-scale online distributed and heterogeneous data sets published by the Australian Urban Research Infrastructure Network. Where clear urban spatio-behavioural relationships of density and movement can be predicted – understanding such patterns supports cross-disciplinary city planning and decision-making. A data-informed – predictive spatial decision-making framework is proposed – facilitating the endeavour of cogenerating kinetic human energy within a prescribed space. This novel proposition could further sustainability strategies for compact living for cities such as in Perth, Western Australia which is increasingly economically and geographically pressured to densify. This research argues that surveillance data elucidate a capacity to interpret and understand impacts of densification strategies, efficacy of CCTV networks in existing and emerging cities.
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Informa UK Limited Authors: Emil Jonescu; Titus Mercea; Khoa Do; Monty Sutrisna;handle: 1959.3/474041
Co-generation of energy derived from human movement is not new. Intentionally accumulating energy, from mass urban-mobility, provides opportunities to re-purpose power. However, when mass-mobility is predictable, yet not harnessed, this highlights critical gaps in application of interdisciplinary knowledge. This research highlights a novel application of geostatistical modelling for the built environment with the purpose of understanding where energy harvesting infrastructure should be located. The work presented argues that advanced Geostatistical methods can be implemented as an appropriate method to predict probability distribution, density, clustering of populations and mass-population mobility patterns from large-scale online distributed and heterogeneous data sets published by the Australian Urban Research Infrastructure Network. Where clear urban spatio-behavioural relationships of density and movement can be predicted – understanding such patterns supports cross-disciplinary city planning and decision-making. A data-informed – predictive spatial decision-making framework is proposed – facilitating the endeavour of cogenerating kinetic human energy within a prescribed space. This novel proposition could further sustainability strategies for compact living for cities such as in Perth, Western Australia which is increasingly economically and geographically pressured to densify. This research argues that surveillance data elucidate a capacity to interpret and understand impacts of densification strategies, efficacy of CCTV networks in existing and emerging cities.
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Other literature type , Internal report , Preprint 2013 NetherlandsPublisher:Elsevier BV Authors: Gurkan, G.; Langestraat, R.;In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Other literature type , Internal report , Preprint 2013 NetherlandsPublisher:Elsevier BV Authors: Gurkan, G.; Langestraat, R.;In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Sohel Anwar; Changfu Zou; Chris Manzie;Abstract In this paper, we investigate distributed thermal-electrochemical modeling of a Lithium-Ion battery cell to include the effect of temperature distribution across the thickness of the cell as a first step to study the module level temperature distribution at high charging rates. Most recent works have focused on lumped thermal models for a Li-Ion cell which ignore any temperature differential across cell thickness. However, even a small temperature differential across cell thickness at the cell level can contribute to significant temperature differential in the thickness direction of stacked-up Li-Ion cells at the module level. Such temperature differential can potentially impact the battery charging control system, especially at high charging rates. Here, the thermal-electrochemical partial differential and algebraic equations for a Li-ion cell are solved via a spatial finite difference method. Simulation results show that the temperature differentials over the cell thickness at the cell level are not insignificant, particularly at high charging rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Sohel Anwar; Changfu Zou; Chris Manzie;Abstract In this paper, we investigate distributed thermal-electrochemical modeling of a Lithium-Ion battery cell to include the effect of temperature distribution across the thickness of the cell as a first step to study the module level temperature distribution at high charging rates. Most recent works have focused on lumped thermal models for a Li-Ion cell which ignore any temperature differential across cell thickness. However, even a small temperature differential across cell thickness at the cell level can contribute to significant temperature differential in the thickness direction of stacked-up Li-Ion cells at the module level. Such temperature differential can potentially impact the battery charging control system, especially at high charging rates. Here, the thermal-electrochemical partial differential and algebraic equations for a Li-ion cell are solved via a spatial finite difference method. Simulation results show that the temperature differentials over the cell thickness at the cell level are not insignificant, particularly at high charging rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NetherlandsPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXKroon, J.M.; Veenstra, S.C.; Andriessen, R.; Galagan, Y.; Blom, P.; Coenen, E.W.C.; Gorter, H.; Sabik, S.; Barink, M.;-
Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NetherlandsPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXKroon, J.M.; Veenstra, S.C.; Andriessen, R.; Galagan, Y.; Blom, P.; Coenen, E.W.C.; Gorter, H.; Sabik, S.; Barink, M.;-
Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 AuthorsKamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; Kalvinder Singh;handle: 10072/429448
A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 AuthorsKamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; Kalvinder Singh;handle: 10072/429448
A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013Publisher:IEEE Authors: Samuel Weatherhog; Rahul Sharma;Lithium-ion batteries are fast becoming the battery of choice in applications such as electric/hybrid electric vehicles (EV/HEV) and renewable energy systems. This increasing usage demands an improved reliability of the battery systems, which in turn heavily relies on the control and optimization algorithms. Of particular importance is ensuring that each lithium-ion cell within a battery pack remains strictly within an acceptable charge range to avoid untimely degradation of the battery pack. Unfortunately, current battery models make the design of charge equalization circuitry difficult due to their limitations. The aim of this paper is to develop a component-wise control-oriented physics-based battery pack model to facilitate implementation of advanced model-based control and optimization algorithms. In the first stage some existing results are used to obtain a simplified electrochemical ODE model of an individual lithium-ion cell. Then, the cell model is used as the building block of the complete battery pack model. Different charge/discharge scenarios are presented to illustrate the potential of the modeling approach in facilitating the implementation of advanced control and optimization algorithms in improved power equalization and hence prolonging the battery pack lifetime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013Publisher:IEEE Authors: Samuel Weatherhog; Rahul Sharma;Lithium-ion batteries are fast becoming the battery of choice in applications such as electric/hybrid electric vehicles (EV/HEV) and renewable energy systems. This increasing usage demands an improved reliability of the battery systems, which in turn heavily relies on the control and optimization algorithms. Of particular importance is ensuring that each lithium-ion cell within a battery pack remains strictly within an acceptable charge range to avoid untimely degradation of the battery pack. Unfortunately, current battery models make the design of charge equalization circuitry difficult due to their limitations. The aim of this paper is to develop a component-wise control-oriented physics-based battery pack model to facilitate implementation of advanced model-based control and optimization algorithms. In the first stage some existing results are used to obtain a simplified electrochemical ODE model of an individual lithium-ion cell. Then, the cell model is used as the building block of the complete battery pack model. Different charge/discharge scenarios are presented to illustrate the potential of the modeling approach in facilitating the implementation of advanced control and optimization algorithms in improved power equalization and hence prolonging the battery pack lifetime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Austria, Spain, Spain, France, Spain, Spain, Australia, Germany, Austria, ItalyPublisher:Korean Physical Society Funded by:FWF | Nucleosynthesis in the la...FWF| Nucleosynthesis in the lab-neutron-capture on Fe and NiGuerrero C.; Becares V.; Cano Ott D.; Fernandez Ordonez M.; Gonzalez Romero E.; Martin Fuertes F.; Martinez T.; Mendoza E.; Pina G.; Quinones J.; Vlachoudis V.; Calviani M.; Andriamonje S.; Brugger M.; Cerutti F.; Chiaveri E.; Ferrari A.; Kadi Y.; Lebbos E.; Berthoumieux E.; Gunsing F.; Andrzejewski J.; Marganiec J.; Perkowski J.; Audouin L.; Berthier B.; Tassan Got L.; Avrigeanu V.; Mirea M.; Becvar F.; Krticka M.; Belloni F.; M. Milazzo P.; Calvino F.; Cortes G.; B. Gomez Hornillos M.; Carrapico C.; F. Goncalves I.; Sarmento R.; Vaz P.; Colonna N.; Marrone S.; Moinul M.; Tagliente G.; Variale V.; Dillmann I.; Domingo Pardo C.; Heil M.; Duran I.; Paradela C.; Tarrio D.; Ganesan S.; Giubrone G.; L. Tain J.; Gramegna F.; F. Mastinu P.; Harrisopulos S.; Ioannides K.; Karadimos D.; Jericha E.; Leeb H.; Weiss C.; Kappeler F.; Lederer C.; Pavlik A.; Wallner A.; Lozano M.; Praena J.; M. Quesada J.; MASSIMI, CRISTIAN; VANNINI, GIANNI; Mengoni A.; Ventura A.; Mosconi M.; Nolte R.; Vlastou R.;doi: 10.3938/jkps.59.1624
handle: 11585/140000 , 1885/78826 , 2117/27869
After a halt of four years, the n TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and e cient cooling. The rst measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated ssion chambers, the n TOF Silicon Monitor, a Mi- croMegas detector with 10B and 235U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron uence. The spatial pro le of the beam has been studied with a specially designed \X-Y
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Austria, Spain, Spain, France, Spain, Spain, Australia, Germany, Austria, ItalyPublisher:Korean Physical Society Funded by:FWF | Nucleosynthesis in the la...FWF| Nucleosynthesis in the lab-neutron-capture on Fe and NiGuerrero C.; Becares V.; Cano Ott D.; Fernandez Ordonez M.; Gonzalez Romero E.; Martin Fuertes F.; Martinez T.; Mendoza E.; Pina G.; Quinones J.; Vlachoudis V.; Calviani M.; Andriamonje S.; Brugger M.; Cerutti F.; Chiaveri E.; Ferrari A.; Kadi Y.; Lebbos E.; Berthoumieux E.; Gunsing F.; Andrzejewski J.; Marganiec J.; Perkowski J.; Audouin L.; Berthier B.; Tassan Got L.; Avrigeanu V.; Mirea M.; Becvar F.; Krticka M.; Belloni F.; M. Milazzo P.; Calvino F.; Cortes G.; B. Gomez Hornillos M.; Carrapico C.; F. Goncalves I.; Sarmento R.; Vaz P.; Colonna N.; Marrone S.; Moinul M.; Tagliente G.; Variale V.; Dillmann I.; Domingo Pardo C.; Heil M.; Duran I.; Paradela C.; Tarrio D.; Ganesan S.; Giubrone G.; L. Tain J.; Gramegna F.; F. Mastinu P.; Harrisopulos S.; Ioannides K.; Karadimos D.; Jericha E.; Leeb H.; Weiss C.; Kappeler F.; Lederer C.; Pavlik A.; Wallner A.; Lozano M.; Praena J.; M. Quesada J.; MASSIMI, CRISTIAN; VANNINI, GIANNI; Mengoni A.; Ventura A.; Mosconi M.; Nolte R.; Vlastou R.;doi: 10.3938/jkps.59.1624
handle: 11585/140000 , 1885/78826 , 2117/27869
After a halt of four years, the n TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and e cient cooling. The rst measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated ssion chambers, the n TOF Silicon Monitor, a Mi- croMegas detector with 10B and 235U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron uence. The spatial pro le of the beam has been studied with a specially designed \X-Y
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECASolomon Assefa Wassie; Michele Colozzi; Fausto Gallucci; Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECASolomon Assefa Wassie; Michele Colozzi; Fausto Gallucci; Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;A membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United Kingdom, AustraliaPublisher:Elsevier BV Rahman Saidur; Rahman Saidur; Devarajan Ramasamy; Mahendran Samykano; K. Farhana; K. Farhana; Hussein A. Mohammed; Kumaran Kadirgama;Abstract The upward energy demand, along with the depletion of conventional energy sources, demands improved utilization of renewable energy resources. Among all renewable energy resources, solar energy is the most appropriate alternative to conventional energy sources owing to its inexhaustibility and green property. Solar collectors are devices that convert solar radiation into heat or energy. However, the efficiency of the solar collector is still not adequate. The competent step to enhance the efficiency of the solar collector is to use nanofluids. This study is carried out different phases viz. characterization and stabilization while both qualitative and quantitative methods used to evaluate the stability of nanofluids thermophysical properties of Al2O3 and CNC nanofluids such as thermal conductivity measured at four different temperature using KD2 Pro, viscosity and specific heat determined at similar temperature range by viscometer and differential scanning calorimetry respectively. The experiment is executed with a fixed flow rate and in steady-state conditions under extensive solar radiation. The experimental study has revealed that up to 2.48% and 8.46% efficiency of solar collector enhanced by using 0.5% Al2O3 and 0.5% CNC nanofluids respectively. Moreover, nanofluids show good to moderate stability performance. Besides, the thermal conductivity of nanofluids increased while viscosity is in a decreasing trend with increasing temperature. Nanofluids could enhance the efficiency of a flat-plate solar collector.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, United Kingdom, AustraliaPublisher:Elsevier BV Rahman Saidur; Rahman Saidur; Devarajan Ramasamy; Mahendran Samykano; K. Farhana; K. Farhana; Hussein A. Mohammed; Kumaran Kadirgama;Abstract The upward energy demand, along with the depletion of conventional energy sources, demands improved utilization of renewable energy resources. Among all renewable energy resources, solar energy is the most appropriate alternative to conventional energy sources owing to its inexhaustibility and green property. Solar collectors are devices that convert solar radiation into heat or energy. However, the efficiency of the solar collector is still not adequate. The competent step to enhance the efficiency of the solar collector is to use nanofluids. This study is carried out different phases viz. characterization and stabilization while both qualitative and quantitative methods used to evaluate the stability of nanofluids thermophysical properties of Al2O3 and CNC nanofluids such as thermal conductivity measured at four different temperature using KD2 Pro, viscosity and specific heat determined at similar temperature range by viscometer and differential scanning calorimetry respectively. The experiment is executed with a fixed flow rate and in steady-state conditions under extensive solar radiation. The experimental study has revealed that up to 2.48% and 8.46% efficiency of solar collector enhanced by using 0.5% Al2O3 and 0.5% CNC nanofluids respectively. Moreover, nanofluids show good to moderate stability performance. Besides, the thermal conductivity of nanofluids increased while viscosity is in a decreasing trend with increasing temperature. Nanofluids could enhance the efficiency of a flat-plate solar collector.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 35 citations 35 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEdith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Informa UK Limited Authors: Emil Jonescu; Titus Mercea; Khoa Do; Monty Sutrisna;handle: 1959.3/474041
Co-generation of energy derived from human movement is not new. Intentionally accumulating energy, from mass urban-mobility, provides opportunities to re-purpose power. However, when mass-mobility is predictable, yet not harnessed, this highlights critical gaps in application of interdisciplinary knowledge. This research highlights a novel application of geostatistical modelling for the built environment with the purpose of understanding where energy harvesting infrastructure should be located. The work presented argues that advanced Geostatistical methods can be implemented as an appropriate method to predict probability distribution, density, clustering of populations and mass-population mobility patterns from large-scale online distributed and heterogeneous data sets published by the Australian Urban Research Infrastructure Network. Where clear urban spatio-behavioural relationships of density and movement can be predicted – understanding such patterns supports cross-disciplinary city planning and decision-making. A data-informed – predictive spatial decision-making framework is proposed – facilitating the endeavour of cogenerating kinetic human energy within a prescribed space. This novel proposition could further sustainability strategies for compact living for cities such as in Perth, Western Australia which is increasingly economically and geographically pressured to densify. This research argues that surveillance data elucidate a capacity to interpret and understand impacts of densification strategies, efficacy of CCTV networks in existing and emerging cities.
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 AustraliaPublisher:Informa UK Limited Authors: Emil Jonescu; Titus Mercea; Khoa Do; Monty Sutrisna;handle: 1959.3/474041
Co-generation of energy derived from human movement is not new. Intentionally accumulating energy, from mass urban-mobility, provides opportunities to re-purpose power. However, when mass-mobility is predictable, yet not harnessed, this highlights critical gaps in application of interdisciplinary knowledge. This research highlights a novel application of geostatistical modelling for the built environment with the purpose of understanding where energy harvesting infrastructure should be located. The work presented argues that advanced Geostatistical methods can be implemented as an appropriate method to predict probability distribution, density, clustering of populations and mass-population mobility patterns from large-scale online distributed and heterogeneous data sets published by the Australian Urban Research Infrastructure Network. Where clear urban spatio-behavioural relationships of density and movement can be predicted – understanding such patterns supports cross-disciplinary city planning and decision-making. A data-informed – predictive spatial decision-making framework is proposed – facilitating the endeavour of cogenerating kinetic human energy within a prescribed space. This novel proposition could further sustainability strategies for compact living for cities such as in Perth, Western Australia which is increasingly economically and geographically pressured to densify. This research argues that surveillance data elucidate a capacity to interpret and understand impacts of densification strategies, efficacy of CCTV networks in existing and emerging cities.
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2019.1703800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Other literature type , Internal report , Preprint 2013 NetherlandsPublisher:Elsevier BV Authors: Gurkan, G.; Langestraat, R.;In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Journal , Other literature type , Internal report , Preprint 2013 NetherlandsPublisher:Elsevier BV Authors: Gurkan, G.; Langestraat, R.;In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2014.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Sohel Anwar; Changfu Zou; Chris Manzie;Abstract In this paper, we investigate distributed thermal-electrochemical modeling of a Lithium-Ion battery cell to include the effect of temperature distribution across the thickness of the cell as a first step to study the module level temperature distribution at high charging rates. Most recent works have focused on lumped thermal models for a Li-Ion cell which ignore any temperature differential across cell thickness. However, even a small temperature differential across cell thickness at the cell level can contribute to significant temperature differential in the thickness direction of stacked-up Li-Ion cells at the module level. Such temperature differential can potentially impact the battery charging control system, especially at high charging rates. Here, the thermal-electrochemical partial differential and algebraic equations for a Li-ion cell are solved via a spatial finite difference method. Simulation results show that the temperature differentials over the cell thickness at the cell level are not insignificant, particularly at high charging rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Sohel Anwar; Changfu Zou; Chris Manzie;Abstract In this paper, we investigate distributed thermal-electrochemical modeling of a Lithium-Ion battery cell to include the effect of temperature distribution across the thickness of the cell as a first step to study the module level temperature distribution at high charging rates. Most recent works have focused on lumped thermal models for a Li-Ion cell which ignore any temperature differential across cell thickness. However, even a small temperature differential across cell thickness at the cell level can contribute to significant temperature differential in the thickness direction of stacked-up Li-Ion cells at the module level. Such temperature differential can potentially impact the battery charging control system, especially at high charging rates. Here, the thermal-electrochemical partial differential and algebraic equations for a Li-ion cell are solved via a spatial finite difference method. Simulation results show that the temperature differentials over the cell thickness at the cell level are not insignificant, particularly at high charging rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20140824-6-za-1003.00919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Lopes Ferreira, HM (Helder); Garde, R; Fulli, G (Gianluca); Kling, WL (Wil); Peças Lopes, JA (João);handle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NetherlandsPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXKroon, J.M.; Veenstra, S.C.; Andriessen, R.; Galagan, Y.; Blom, P.; Coenen, E.W.C.; Gorter, H.; Sabik, S.; Barink, M.;-
Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NetherlandsPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXKroon, J.M.; Veenstra, S.C.; Andriessen, R.; Galagan, Y.; Blom, P.; Coenen, E.W.C.; Gorter, H.; Sabik, S.; Barink, M.;-
Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 AuthorsKamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; Kalvinder Singh;handle: 10072/429448
A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Kamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; +1 AuthorsKamanashis Biswas; Vallipuram Muthukkumarasamy; Mohammad Jabed Morshed Chowdhury; Xin-Wen Wu; Kalvinder Singh;handle: 10072/429448
A Wireless Sensor Network (WSN) is comprised of a number of sensor nodes (SNs) that are randomly placed in an open, harsh environment for many applications. Due to the resource-constrained nature of SNs and hostile deployment environments, energy efficiency and security are considered two key factors in designing WSN routing protocols. This paper proposes an Energy Efficient Secure Multipath (EESM) routing protocol to securely construct efficient routes and transmit data packets between SNs and the base station (BS). EESM achieves energy efficiency through minimal task allocation among SNs whereas all computation-intensive tasks such as network information collection, routing table generation, and network maintenance are performed by the BS. The proposed protocol incorporates lightweight security mechanisms including a one-way hash chain, message authentication code, encryption, and clique-based coordinator selection and monitoring schemes to defend against numerous security attacks. Simulation results show that EESM can successfully detect and protect the network against various security attacks such as replay attacks, sybil attacks, sinkhole attacks, spoofing attacks, compromised node attacks, and so on. In terms of energy efficiency, the proposed protocol achieves an up to 37% increase in network lifetime and a 6% increase in throughput over Secure and Energy Efficient Multipath (SEEM) routing, Secure and Reliable Multipath Routing (SRMR), and Reliable and Multipath Encounter Routing (RMER) protocols. The paper implements the protocol in a real environment using Arduino motes to analyze security overheads and network setup time.
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 21 citations 21 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2023Full-Text: http://hdl.handle.net/10072/429448Data sources: Bielefeld Academic Search Engine (BASE)Australian Catholic University: ACU Research BankArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.comnet.2023.109842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013Publisher:IEEE Authors: Samuel Weatherhog; Rahul Sharma;Lithium-ion batteries are fast becoming the battery of choice in applications such as electric/hybrid electric vehicles (EV/HEV) and renewable energy systems. This increasing usage demands an improved reliability of the battery systems, which in turn heavily relies on the control and optimization algorithms. Of particular importance is ensuring that each lithium-ion cell within a battery pack remains strictly within an acceptable charge range to avoid untimely degradation of the battery pack. Unfortunately, current battery models make the design of charge equalization circuitry difficult due to their limitations. The aim of this paper is to develop a component-wise control-oriented physics-based battery pack model to facilitate implementation of advanced model-based control and optimization algorithms. In the first stage some existing results are used to obtain a simplified electrochemical ODE model of an individual lithium-ion cell. Then, the cell model is used as the building block of the complete battery pack model. Different charge/discharge scenarios are presented to illustrate the potential of the modeling approach in facilitating the implementation of advanced control and optimization algorithms in improved power equalization and hence prolonging the battery pack lifetime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013Publisher:IEEE Authors: Samuel Weatherhog; Rahul Sharma;Lithium-ion batteries are fast becoming the battery of choice in applications such as electric/hybrid electric vehicles (EV/HEV) and renewable energy systems. This increasing usage demands an improved reliability of the battery systems, which in turn heavily relies on the control and optimization algorithms. Of particular importance is ensuring that each lithium-ion cell within a battery pack remains strictly within an acceptable charge range to avoid untimely degradation of the battery pack. Unfortunately, current battery models make the design of charge equalization circuitry difficult due to their limitations. The aim of this paper is to develop a component-wise control-oriented physics-based battery pack model to facilitate implementation of advanced model-based control and optimization algorithms. In the first stage some existing results are used to obtain a simplified electrochemical ODE model of an individual lithium-ion cell. Then, the cell model is used as the building block of the complete battery pack model. Different charge/discharge scenarios are presented to illustrate the potential of the modeling approach in facilitating the implementation of advanced control and optimization algorithms in improved power equalization and hence prolonging the battery pack lifetime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesmg.2013.6672206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Austria, Spain, Spain, France, Spain, Spain, Australia, Germany, Austria, ItalyPublisher:Korean Physical Society Funded by:FWF | Nucleosynthesis in the la...FWF| Nucleosynthesis in the lab-neutron-capture on Fe and NiGuerrero C.; Becares V.; Cano Ott D.; Fernandez Ordonez M.; Gonzalez Romero E.; Martin Fuertes F.; Martinez T.; Mendoza E.; Pina G.; Quinones J.; Vlachoudis V.; Calviani M.; Andriamonje S.; Brugger M.; Cerutti F.; Chiaveri E.; Ferrari A.; Kadi Y.; Lebbos E.; Berthoumieux E.; Gunsing F.; Andrzejewski J.; Marganiec J.; Perkowski J.; Audouin L.; Berthier B.; Tassan Got L.; Avrigeanu V.; Mirea M.; Becvar F.; Krticka M.; Belloni F.; M. Milazzo P.; Calvino F.; Cortes G.; B. Gomez Hornillos M.; Carrapico C.; F. Goncalves I.; Sarmento R.; Vaz P.; Colonna N.; Marrone S.; Moinul M.; Tagliente G.; Variale V.; Dillmann I.; Domingo Pardo C.; Heil M.; Duran I.; Paradela C.; Tarrio D.; Ganesan S.; Giubrone G.; L. Tain J.; Gramegna F.; F. Mastinu P.; Harrisopulos S.; Ioannides K.; Karadimos D.; Jericha E.; Leeb H.; Weiss C.; Kappeler F.; Lederer C.; Pavlik A.; Wallner A.; Lozano M.; Praena J.; M. Quesada J.; MASSIMI, CRISTIAN; VANNINI, GIANNI; Mengoni A.; Ventura A.; Mosconi M.; Nolte R.; Vlastou R.;doi: 10.3938/jkps.59.1624
handle: 11585/140000 , 1885/78826 , 2117/27869
After a halt of four years, the n TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and e cient cooling. The rst measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated ssion chambers, the n TOF Silicon Monitor, a Mi- croMegas detector with 10B and 235U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron uence. The spatial pro le of the beam has been studied with a specially designed \X-Y
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Austria, Spain, Spain, France, Spain, Spain, Australia, Germany, Austria, ItalyPublisher:Korean Physical Society Funded by:FWF | Nucleosynthesis in the la...FWF| Nucleosynthesis in the lab-neutron-capture on Fe and NiGuerrero C.; Becares V.; Cano Ott D.; Fernandez Ordonez M.; Gonzalez Romero E.; Martin Fuertes F.; Martinez T.; Mendoza E.; Pina G.; Quinones J.; Vlachoudis V.; Calviani M.; Andriamonje S.; Brugger M.; Cerutti F.; Chiaveri E.; Ferrari A.; Kadi Y.; Lebbos E.; Berthoumieux E.; Gunsing F.; Andrzejewski J.; Marganiec J.; Perkowski J.; Audouin L.; Berthier B.; Tassan Got L.; Avrigeanu V.; Mirea M.; Becvar F.; Krticka M.; Belloni F.; M. Milazzo P.; Calvino F.; Cortes G.; B. Gomez Hornillos M.; Carrapico C.; F. Goncalves I.; Sarmento R.; Vaz P.; Colonna N.; Marrone S.; Moinul M.; Tagliente G.; Variale V.; Dillmann I.; Domingo Pardo C.; Heil M.; Duran I.; Paradela C.; Tarrio D.; Ganesan S.; Giubrone G.; L. Tain J.; Gramegna F.; F. Mastinu P.; Harrisopulos S.; Ioannides K.; Karadimos D.; Jericha E.; Leeb H.; Weiss C.; Kappeler F.; Lederer C.; Pavlik A.; Wallner A.; Lozano M.; Praena J.; M. Quesada J.; MASSIMI, CRISTIAN; VANNINI, GIANNI; Mengoni A.; Ventura A.; Mosconi M.; Nolte R.; Vlastou R.;doi: 10.3938/jkps.59.1624
handle: 11585/140000 , 1885/78826 , 2117/27869
After a halt of four years, the n TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and e cient cooling. The rst measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated ssion chambers, the n TOF Silicon Monitor, a Mi- croMegas detector with 10B and 235U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron uence. The spatial pro le of the beam has been studied with a specially designed \X-Y
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu