- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- Embargo
- 12. Responsible consumption
- 6. Clean water
- NL
- CN
- Energy Research
- Restricted
- Open Source
- Embargo
- 12. Responsible consumption
- 6. Clean water
- NL
- CN
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSAuthors:Zhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.; +6 AuthorsZhang, Y.
Zhang, Y. in OpenAIREZhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.;Zhang, Y.
Zhang, Y. in OpenAIREJeppesen, E.;
Jeppesen, E.
Jeppesen, E. in OpenAIREShi, K.;
Brookes, J.D.;
Spencer, R.G.M.; Zhu, G.; Gao, G.;Brookes, J.D.
Brookes, J.D. in OpenAIREThis study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SwitzerlandPublisher:Elsevier BV Domestic heating represents the most dominant energy function in Dutch households nowadays. Using district heat from CHP (combined heat and power) by means of a NGCC (natural gas-fired combined cycle) plants is generally acknowledged as an effective option to reduce primary energy consumption for heating. However, methods to calculate energy savings from CHP differ widely. This paper compares a number of different methods, including the method from the EU CHP Directive, to estimate primary energy savings in comparison with the typically used domestic gas-fired condensing boiler. Real hourly CHP plant performance data is used. An estimation of the CO2 mitigation cost of delivering district heat to Dutch dwellings is made. We find that supplying dwellings with district heat from an NGCC-CHP saves energy, regardless of the calculation method and for a rather wide range of reference efficiencies. CO2 mitigation costs are acceptable from a social perspective (at discount rates up to 4%, excluding fuel taxes) and negative from a private perspective (at discount rates up to 10%, including fuel taxes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 NetherlandsPublisher:Elsevier BV Authors:Fami, Hossein Shabanali;
Fami, Hossein Shabanali
Fami, Hossein Shabanali in OpenAIREAramyan, Lusine H.;
Aramyan, Lusine H.
Aramyan, Lusine H. in OpenAIRESijtsema, Siet J.;
Alambaigi, Amir;Sijtsema, Siet J.
Sijtsema, Siet J. in OpenAIREAbout 25 million tons of food go wasted or lost in Iran which has socio-economic and environmental consequences for both the country and the households. The main objective of this research is to develop a model to examine the relationship between FCM components and the amount of FW of households in Tehran city, with a focus on urban women. By means of a structural model, this study provides a novel approach to exploring relationships between the food-related behavior of urban households and waste control (n = 1197). Besides, this study is the first attempt to quantify food waste in Iran at the household level. According to the adopted self-reporting procedure, in Tehran, every consumer wastes about 27.6 kg of edible food annually. It is found that households with better food consumption management (FCM (have a lower level of food waste. Moreover, the results have proved that other determinants such as demographic factors, economic power, information use, ability, and motivation have direct and indirect significant effects on FCM as well as on the amount of food waste generation. The findings suggest that the above-mentioned determinants are crucial and should be considered when developing a strategically sustainable food waste prevention plan.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Resources Conservation and RecyclingArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2018.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors:Goh, Chun Sheng;
Goh, Chun Sheng
Goh, Chun Sheng in OpenAIREJunginger, Martin;
Faaij, André;Junginger, Martin
Junginger, Martin in OpenAIREdoi: 10.1002/bbb.1445
AbstractTransition to a bio‐based economy will create new demand for biomass, e.g. the increasing use of bioenergy, but the impacts on existing markets are unclear. Furthermore, there is a growing public concern on the sustainability of biomass. This study proposes a methodological framework for mapping national biomass flows based on domestic production‐consumption and cross‐border trade, and respective share of sustainably‐certified biomass. A case study was performed on the Netherlands for 2010‐2011, focusing on three categories: (i) woody biomass, (ii) oils and fats, and (iii) carbohydrates. Between 2010‐2011 few major shifts were found, besides the increasing biofuel production. The share of sustainably‐certified feedstock is growing in many categories. Woody biomass used for energy amounted to 3.45 MT, including 1.3 MT imported wood pellets ( >85% certified). About 0.6 MT of oils and fats and 1.2 MT (estimation) of carbohydrates were used for biofuel production. It is assumed that only certified materials were used for biofuel production. For non‐energy purpose, more than 50% of woody biomass used was either certified or derived from recycled streams. Certified oils has entered the Dutch food sector since 2011, accounted for 7% of total vegetable oils consumption. It is expected that carbohydrates will also be certified in the near future. Methodological challenges encountered are: inconsistency in data definitions, lack of coherent cross‐sectorial reporting systems, low reliability of bilateral trade statistics, lack of transparency in biomass supply chains, and disparity in sustainability requirements. The methodology may be expanded for future projection in different scenarios. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Netherlands, BelgiumPublisher:Elsevier BV Authors: Maarten Bettens; Piet Seuntjens; Piet Seuntjens;Jeremy De Valck;
+3 AuthorsJeremy De Valck
Jeremy De Valck in OpenAIREMaarten Bettens; Piet Seuntjens; Piet Seuntjens;Jeremy De Valck;
Jeremy De Valck
Jeremy De Valck in OpenAIREInge Liekens;
Inge Liekens
Inge Liekens in OpenAIRESteven Broekx;
Steven Broekx
Steven Broekx in OpenAIREAlistair Beames;
Alistair Beames
Alistair Beames in OpenAIREhandle: 10067/1575390151162165141
Urban environments provide opportunities for greater resource efficiency and the fostering of urban ecosystems. Brownfield areas are a typical example of underused land resources. Brownfield redevelopment projects that include green infrastructure allow for further ecosystems to be accommodated in urban environments. Green infrastructure also deliver important urban ecosystem services (UES) to local residents, which can greatly contribute to improving quality of life in cities. In this case study, we quantify and assess the economic value of five UES for a brownfield redevelopment project in Antwerp, Belgium. The assessment is carried out using the “Nature Value Explorer” modelling tool. The case includes three types of green infrastructure (green corridor,infiltration gullies and green roofs) primarily intended to connect nature reserves on the urban periphery and to avoid surface runoff. The green infrastructure also provides air filtration, climate regulation, carbon sequestration and recreation ecosystem services. The value of recreation far exceeds other values, including the value of avoided runoff. The case study raises crucial questions as to whether existing UES valuation approaches adequately account for the range of UES provided and whether such approaches can be improved to achieve more accurate and reliable value estimates in future analyses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoser.2018.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoser.2018.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 NetherlandsPublisher:Elsevier BV Authors:W.A.M. Hijnen;
R. Schurer; J.A. Bahlman; H.A.M. Ketelaars; +3 AuthorsW.A.M. Hijnen
W.A.M. Hijnen in OpenAIREW.A.M. Hijnen;
R. Schurer; J.A. Bahlman; H.A.M. Ketelaars; R. Italiaander; A. van der Wal; P.W.J.J. van der Wielen;W.A.M. Hijnen
W.A.M. Hijnen in OpenAIREpmid: 29153877
It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L-1) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L-1. The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC14). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.10.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.10.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 NetherlandsPublisher:Elsevier BV handle: 11245/1.287231
Abstract Public attitudes anywhere in Europe show moderate to strong support for the implementation of renewable energy. Nevertheless, planning wind power developments appears to be a complicated matter in most countries. The problems that have to be dealt with during decision making processes on the siting of wind turbines are usually referred to as mere ‘communication problems’. However, public attitudes towards wind power are fundamentally different from attitudes towards wind farms. This ‘gap’ causes misunderstandings about the nature of public support for renewables. In particular where planners easily assume support for renewables can be generated by information campaigns emphasising the environmental benefits, whereas opposition to renewable energy schemes can be explained by a selfish ‘not in my backyard’ attitude. Both explanations used by planners, authorities and, unfortunately, by many scholars, are falsified. Furthermore, policies that still take this ‘common knowledge’ for granted can have negative consequences for the implementation rates of renewables. Visual evaluation of the impact of wind power on landscape values is by far the dominant factor in explaining why some are opposed to wind power and others are supporting it. Moreover, feelings about equity and fairness appear the determinants of ‘backyard’ motives, instead of selfishness.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2007Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2005.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu794 citations 794 popularity Top 0.1% influence Top 0.1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2007Data sources: DANS (Data Archiving and Networked Services)Renewable and Sustainable Energy ReviewsArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2007Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2007Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2005.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 DenmarkPublisher:Elsevier BV Danni Yang;Sien Li;
Mousong Wu; Hanbo Yang;Wenxin Zhang;
Wenxin Zhang
Wenxin Zhang in OpenAIREJi Chen;
Chunyu Wang; Siyu Huang; Ruoqing Zhang; Yunxuan Zhang;To mitigate the climate change-induced water shortage and realize the sustainable development of agriculture, drip irrigation, a more efficient water-saving irrigation method, has been intensively implemented in most arid agricultural regions in the world. However, compared to traditional border irrigation, how drip irrigation affects the biophysical conditions in the cropland and how crops physiologically respond to changes in biophysical conditions in terms of water, heat and carbon exchange remain largely unknown. In view of the above situation, to reveal the mechanism of drip irrigation in improving spring wheat water productivity, paired field experiments based on drip irrigation and border irrigation were conducted to extensively monitor water and heat fluxes at a typical spring wheat field (Triticum aestivum L.) in Northwest China during 2017–2020. The results showed that drip irrigation improved yield by 10.3 % and crop water productivity (i.e., yield-to-evapotranspiration-ratio) by 15.6 %, but reduced LAI by 16.9 % in contrast with border irrigation. Under drip irrigation, the lateral development of spring wheat roots was promoted by higher soil temperature combined with frequent dry-wet alternation in the shallow soil layer (0–20 cm), which was the basis for efficient absorption of water and fertilizer, as well as efficient formation of photosynthate. Meanwhile, drip irrigation increased net radiation and decreased latent heat flux by inhibiting leaf growth, thereby increased sensible heat, causing a higher soil temperature (+1.10 ℃) and canopy temperature (+1.11 ℃). Further analysis proved that soil temperature was the key factor affecting yield formation. Based on the above conditions, the decrease in leaf distribution coefficient (−0.030) led to the decrease in evapotranspiration (−5.7 %) and the increase in ear distribution coefficient (+0.029). Therefore, drip irrigation emphasized the role of soil moisture in the soil-plant-atmosphere continuum, enhanced crop activity by increasing field temperature, especially soil temperature, and finally improved yield and water productivity via carbon reallocation. The study revealed the mechanism of drip irrigation for improving spring wheat yield, and would contribute to improving Earth system models in representing agricultural cropland ecosystems with drip irrigation and predicting the subsequent biophysical and biogeochemical feedbacks to climate change.
PURE Aarhus Universi... arrow_drop_down European Journal of AgronomyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down European Journal of AgronomyArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126710&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Wiley Authors:Zefeng Chen;
Zefeng Chen
Zefeng Chen in OpenAIREWeiguang Wang;
Weiguang Wang
Weiguang Wang in OpenAIREAlessandro Cescatti;
Alessandro Cescatti
Alessandro Cescatti in OpenAIREGiovanni Forzieri;
Giovanni Forzieri
Giovanni Forzieri in OpenAIREAbstractClimate change alters surface water availability (WA; precipitation minus evapotranspiration, P − ET) and consequently impacts agricultural production and societal water needs, leading to increasing concerns on the sustainability of water use. Although the direct effects of climate change on WA have long been recognized and assessed, indirect climate effects occurring through adjustments in terrestrial vegetation are more subtle and not yet fully quantified. To address this knowledge gap, here we investigate the interplay between climate‐induced changes in leaf area index (LAI) and ET and quantify its ultimate effect on WA during the period 1982–2016 at the global scale, using an ensemble of data‐driven products and land surface models. We show that ~44% of the global vegetated land has experienced a significant increase in growing season‐averaged LAI and climate change explains 33.5% of this greening signal. Such climate‐induced greening has enhanced ET of 0.051 ± 0.067 mm year−2 (mean ± SD), further amplifying the ongoing increase in ET directly driven by variations in climatic factors over 36.8% of the globe, and thus exacerbating the decline in WA prominently in drylands. These findings highlight the indirect impact of positive feedbacks in the land–climate system on the decline of WA, and call for an in‐depth evaluation of these phenomena in the design of local mitigation and adaptation plans.
Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Flore (Florence Rese... arrow_drop_down Global Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Elsevier BV Authors:Pan, Xunzhang;
Pan, Xunzhang
Pan, Xunzhang in OpenAIREden Elzen, Michel;
den Elzen, Michel
den Elzen, Michel in OpenAIREHöhne, Niklas;
Höhne, Niklas
Höhne, Niklas in OpenAIRETeng, Fei;
+1 AuthorsTeng, Fei
Teng, Fei in OpenAIREPan, Xunzhang;
Pan, Xunzhang
Pan, Xunzhang in OpenAIREden Elzen, Michel;
den Elzen, Michel
den Elzen, Michel in OpenAIREHöhne, Niklas;
Höhne, Niklas
Höhne, Niklas in OpenAIRETeng, Fei;
Wang, Lining;Teng, Fei
Teng, Fei in OpenAIREIn order to achieve the Paris Agreement goals of keeping the temperature rise well below 2 °C or even 1.5 °C, all countries would need to make fair and ambitious contributions to reducing emissions. A vast majority of countries have adopted reduction targets by 2030 in their Nationally Determined Contributions (NDCs). There are many alternative ways to analyze the fairness of national mitigation contributions. This article uses a model framework based on six equity principles of effort-sharing, to allocate countries’ reduction targets under global emissions scenarios consistent with meeting the Paris climate goals. It further compares these allocations with the NDCs. The analysis shows that most countries need to adopt more ambitious reduction targets by 2030 to meet 2 °C, and even more for 1.5 °C. In the context of 2 °C, the NDCs of the United States of America and the European Union lack ambition with respect to the approaches that emphasize responsibility; China's NDC projection falls short of satisfying any approach in 2030. In the context of 1.5 °C, only India, by implementing its most ambitious efforts by 2030, could be in line with most equity principles. For most countries, the NDCs would use most of their allowed emissions space for the entire 21 st century by 2030, posing a major challenge to transform to a pathway consistent with their fair contributions in the long-term.
Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science & PolicyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2017.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science & PolicyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2017.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu