- home
- Advanced Search
- Energy Research
- 11. Sustainability
- GB
- NL
- Tsinghua University
- Energy Research
- 11. Sustainability
- GB
- NL
- Tsinghua University
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Leng, L; Jia, H; Chen, AS; Zhu, DZ; Xu, T; Yu, S;handle: 10871/125025
Abstract The optimized green-grey infrastructures are promising solutions to combat the urban flood and water quality problems which have been severe owe to the increasing urbanization and climate change. However, the focusses in existing researches have been either on finding the best strategy by scenario analysis method or optimal design of LID practices under the hypothesis of unchanged grey infrastructures. Little is known regarding the synergistic effect of synchronous optimization design of both green and grey infrastructures. In the study, we conduct green-grey infrastructures synchronous optimization by modifying the decision variables of traditional simulation-optimization frameworks and investigate how external uncertainties will affect their performance. The methodology was applied to a case study in Suzhou, China. The results showed that although the cost of green-grey synchronous optimized scenarios is lower than that of green optimized only scenarios by 1.69–4.19 thousand USD per km2, the runoff/pollutants reductions of green-grey synchronous optimized scenarios are 0.11%–5.24% higher than that of green optimized only scenarios. In the green-grey synchronous optimized scenarios, green infrastructures can contribute to runoff/pollutants control by 50%–63%/62%–70%, while grey infrastructures can contribute to the remaining part by 37%–50%/30%–38%.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125025Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125025Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Embargo end date: 01 Jan 2016 Portugal, Finland, Portugal, United Kingdom, SwitzerlandPublisher:SAGE Publications Publicly fundedFunded by:SSHRC, SNSF | The Politics of Climate C..., NSF | HSD: Collaborative Resear...SSHRC ,SNSF| The Politics of Climate Change: Options for Action in a Changing International Environment ,NSF| HSD: Collaborative Research: Social Networks as Agents of Change in Climate Change Policy MakingBroadbent, J; Sonnett, J; Botetzagias, I; Carson, M; Carvalho, A; Chien, Y-J; Edling, C; Fisher, D; Giouzepas, G; Haluza-DeLay, R; Hasegawa, K; Hirschi, C; Horta, A; Ikeda, K; Jin, J; Ku, D; Lahsen, M; Lee, H-C; Lin, T-LA; Malang, T; Ollmann, J; Payne, D; Pellissery, S; Price, S; Pulver, S; Sainz, J; Satoh, K; Saunders, C; Schmidt, L; Stoddart, MCJ; Swarnakar, P; Tatsumi, T; Tindall, D; Vaughter, P; Wagner, P; Yun, S-J; Zhengyi, S;handle: 10138/303363 , 10871/29754
Reducing global emissions will require a global cosmopolitan culture built from detailed attention to conflicting national climate change frames (interpretations) in media discourse. The authors analyze the global field of media climate change discourse using 17 diverse cases and 131 frames. They find four main conflicting dimensions of difference: validity of climate science, scale of ecological risk, scale of climate politics, and support for mitigation policy. These dimensions yield four clusters of cases producing a fractured global field. Positive values on the dimensions show modest association with emissions reductions. Data-mining media research is needed to determine trends in this global field.
CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, France, United Kingdom, United StatesPublisher:Elsevier BV Yutao Wang; Vincent Viguié; Neil A. Fromer; Zhu Liu; Zhu Liu; Zhu Liu; Dabo Guan; Jingru Liu; Zhifu Mi;Cities, the core of the global climate change mitigation and strategic low-carbon development, are shelters to more than half of the world population and responsible for three quarters of global energy consumption and greenhouse gas (GHG). This special volume (SV) provides a platform that promotes multi- and inter- disciplinary analyses and discussions on the climate change mitigation for cities. All papers are divided into four themes, including GHG emission inventory and accounting, climate change and urban sectors, climate change and sustainable development, and strategies and mitigation action plans. First, this SV provides methods for constructing emission inventory from both production and consumption perspectives. These methods are useful to improve the comprehensiveness and accuracy of carbon accounting for international cities. Second, the climate change affects urban sectors from various aspects; simultaneously, GHG emissions caused by activities in urban sectors affect the climate system. This SV focuses on mitigation policies and assessment of energy, transport, construction, and service sectors. Third, climate change mitigation of cities is closely connected to urban sustainable development. This SV explores the relationships between climate change mitigation with urbanization, ecosystems, air pollution, and extreme events. Fourth, climate change mitigation policies can be divided into two categories: quantity-based mechanism (e.g., carbon emission trading) and price-based mechanism (e.g., carbon tax). This SV provides experiences of local climate change mitigation all over the world and proposes the city-to-city cooperation on climate change mitigation.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Oxford University Press (OUP) Shuyi Qiu; Xiaofang Chen; Xiaofang Chen; Guojin Luo; Yu Guo; Zheng Bian; Liming Li; Zhengming Chen; Xianping Wu; John S Ji;doi: 10.1093/ije/dyab191
pmid: 34536011
Abstract Background Estimates indicate that household air pollution caused by solid fuel burning accounted for about 1.03 million premature mortalities in China in 2016. In the country’s rural areas, more than half the population still relies on biomass fuels and coals for cooking and heating. Understanding the health impact of indoor air pollution and socioeconomic indicators is essential for the country to improve its developmental targets. We aimed to describe demographic and socioeconomic characteristics associated with solid fuel users in a rural area in China. We also estimated the risk of cardiovascular disease and all-cause mortality in association with solid fuel use and described the relationship between solid fuel use, socioeconomic status and mortality. We also measured the risk of long-term use, and the effect of ameliorative action, on mortality caused by cardiovascular disease and other causes. Methods We used the China Kadoorie Biobank (CKB) site in Pengzhou, Sichuan, China. We followed a cohort of 55 687 people over 2004–13. We calculated the mean and standard deviation among subgroups classified by fuel use types: gas, coal, wood and electricity (central heating additionally for heating). We tested the mediation effect using the stepwise method and Sobel test. We used Cox proportional models to estimate the risk of incidences of cardiovascular disease and mortality with survival days as the time scale, adjusted for age, gender, socioeconomic status, physical measurements, lifestyle, stove ventilation and fuel type used for other purposes. The survival days were defined as the follow-up days from the baseline survey till the date of death or 31 December 2013 if right-censored. We also calculated the absolute mortality rate difference (ARD) between the exposure group and the reference group. Results The study population had an average age of 51.0, and 61.9% of the individuals were female; 64.8% participants (n = 35 543) cooked regularly and 25.4% participants (n = 13 921) needed winter heating. With clean fuel users as the reference group, participant households that used solid fuel for cooking or heating both had a higher risk of all-cause mortality: hazard ratio (HR) for: cooking, 1.11 [95% confidence interval (CI) 1.02, 1.26]; heating, 1.34 (95% CI 1.16, 1.54). Solid fuel used for winter heating was associated with a higher risk of mortality caused by cerebrovascular disease: HR 1.64 (95% CI 1.12, 2.40); stroke: HR 1.70 (95% CI 1.13, 2.56); and cardiovascular disease: HR 1.49 (95% CI 1.10, 2.02). Low income and poor education level had a significant correlation with solid fuel used for cooking: odds ratio (OR) for income: 2.27 (95% CI 2.14, 2.41); education: 2.34 (95% CI 2.18, 2.53); and for heating: income: 2.69 (95% CI 2.46, 2.97); education: 2.05 (95% CI 1.88, 2.26), which may be potential mediators bridging the effects of socioeconomic status factors on cardiovascular disease and all-cause mortality. Solid fuel used for cooking and heating accounted for 42.4% and 81.1% of the effect of poor education and 55.2% and 76.0% of the effect of low income on all-cause mortality, respectively. The risk of all-cause mortality could be ameliorated by stopping regularly cooking and heating using solid fuel or switching from solid fuel to clean fuels: HR for cooking: 0.90 (95% CI 0.84, 0.96); heating: 0.76 (95% CI 0.64, 0.92). Conclusions Our study reinforces the evidence of an association between solid fuel use and risk of cardiovascular disease and all-cause mortality. We also assessed the effect of socioeconomic status as the potential mediator on mortality. As solid fuel use was a major contributor in the effect of socioeconomic status on cardiovascular disease and all-cause mortality, policies to improve access to clean fuels could reduce morbidity and mortality related to poor education and low income.
International Journa... arrow_drop_down International Journal of EpidemiologyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyab191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of EpidemiologyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyab191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Xunmin Ou; Zhiyi Yuan; Tianduo Peng; Zhenqing Sun; Sheng Zhou;doi: 10.3390/su9071184
CO2 emission resulted from fossil energy use is threatening human sustainability globally. This study focuses on the low-carbon transition of Hebei’s coal-dominated energy system by estimating its total end-use energy consumption, primary energy supply and resultant CO2 emission up to 2030, by employing an energy demand analysis model based on setting of the economic growth rate, industrial structure, industry/sector energy consumption intensity, energy supply structure, and CO2 emission factor. It is found that the total primary energy consumption in Hebei will be 471 and 431 million tons of coal equivalent (tce) in 2030 in our two defined scenarios (conventional development scenario and coordinated development scenario), which are 1.40 and 1.28 times of the level in 2015, respectively. The resultant full-chain CO2 emission will be 1027 and 916 million tons in 2030 in the two scenarios, which are 1.24 and 1.10 times of the level in 2015, respectively. The full-chain CO2 emission will peak in about 2025. It is found that the coal-dominated situation of energy structure and CO2 emission increasing trend in Hebei can be changed in the future in the coordinated development scenario, in which Beijing-Tianjin-Hebei area coordinated development strategy will be strengthened. The energy structure of Hebei can be optimised since the proportion of coal in total primary energy consumption can fall from around 80% in 2015 to below 30% in 2030 and the proportions of transferred electricity, natural gas, nuclear energy and renewable energy can increase rapidly. Some specific additional policy instruments are also suggested to support the low-carbon transition of energy system in Hebei under the framework of the coordinated development of Beijing-Tianjin-Hebei area, and with the support from the central government of China.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Elsevier BV Dabo Guan; Jinyue Yan; Jinyue Yan; Peng Gong; Zhu Liu; Wenjia Cai; Chi Zhang; Chi Zhang; Yi-Ming Wei; Zheng Li;In 2018, a total of US$166 billion global economic losses and a new high of 55.3 Gt of CO2 equivalent emission were generated by 831 climate-related extreme events. As the world's largest CO2 emitter, we reported China's recent progresses and pitfalls in climate actions to achieve climate mitigation targets (i.e., limit warming to 1.5–2°C above the pre-industrial level). We first summarized China's integrated actions (2015 onwards) that benefit both climate change mitigation and Sustainable Development Goals (SDGs). These projects include re-structuring organizations, establishing working goals and actions, amending laws and regulations at national level, as well as increasing social awareness at community level. We then pointed out the shortcomings in different regions and sectors. Based on these analyses, we proposed five recommendations to help China improving its climate policy strategies, which include: 1) restructuring the economy to balance short-term and long-term conflicts; 2) developing circular economy with recycling mechanism and infrastructure; 3) building up unified national standards and more accurate indicators; 4) completing market mechanism for green economy and encouraging green consumption; and 5) enhancing technology innovations and local incentives via bottom-up actions.
Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:IEEE Chuyuan Zhang; Tianyi Zhang; Shengsheng Cao; Yanxi Chen; Fuxin Du; Longfei Zhou; Haoran Ma; Ziyan He; Qikai Su; Guanghua Cheng; Jie Zheng; Shijun Lun; Shuqing Li; Wenyang Gao; Yajun Fang; Zejun Zhang;Our current society is facing challenges in both sustainability and environmental pollution due to fast urbanization, limited resources, and increasing senior population. Smart cities which aim to increase efficiency and convenience would not be able to solve fundamental challenges caused by urban lifestyles. In 2013, the Universal Village concept was proposed to enhance human-nature harmony through prudent use of technologies and to address the eco-challenges due to fast urbanization.This paper first studies the environmental implications due to urban lifestyles and proposes the suitable UV framework and detailed content of universal village lifestyle in order to address the eco-challenges. The paper then evaluates the development of current smart city technologies and assesses their validity with regard to the concept of Universal Village through systematic studies of several major intelligent systems.Specifically, this paper discusses the subject of connectivity from four perspectives: mutual interaction, feedback loop, dynamic information loop, and material cycle. The paper evaluates whether information feedback loops could be formed for these major systems, and also explores the mutual interaction and dependence among the seemingly independent major systems. We discover that mutual interaction connects the aforementioned systems into an interconnected network and naturally forms dynamic information loops in which the decision of one system may be the required input of another system or vice versa. This implies that proper functioning of these systems requires extensive information sharing among them. One event might dynamically trigger different events. The last connectivity is a material cycle. We explore the whole life cycle of products, including impact from lifestyle, customers’ need, product design, cloud manufacturing, sale channel, feedback collection from customers, reuse and recycling, scrapping, to final waste-disposal, etc., and study how to reduce the demand for resource and waste during the procedure. The idea is to include the perspective of UV lifestyle when designing products: considering the possibility in proactively reducing the need, sharing a product with different people, reusing product parts into the manufacturing, recycling reusable components of finished products before the products’ being fully disassembled, etc. The advantage is to reduce the need for products and to avoid manufacturing the same components from raw materials directly, which demands less resource.In summary, connectivity, as discussed from the four perspectives, would greatly contribute to the effectiveness and efficiency of our connected smart systems. Dynamic information loop helps coordinate resource allocation, decreases the collective costs, and reduces demand of natural resources from the natural environment, resulting in less damage to the environment which ultimately enhances system-wide harmony between human and its natural environment, and leads to human happiness in general.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/uv.2018.8642142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/uv.2018.8642142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Elsevier BV Pan, Xunzhang; den Elzen, Michel; Höhne, Niklas; Teng, Fei; Wang, Lining;In order to achieve the Paris Agreement goals of keeping the temperature rise well below 2 °C or even 1.5 °C, all countries would need to make fair and ambitious contributions to reducing emissions. A vast majority of countries have adopted reduction targets by 2030 in their Nationally Determined Contributions (NDCs). There are many alternative ways to analyze the fairness of national mitigation contributions. This article uses a model framework based on six equity principles of effort-sharing, to allocate countries’ reduction targets under global emissions scenarios consistent with meeting the Paris climate goals. It further compares these allocations with the NDCs. The analysis shows that most countries need to adopt more ambitious reduction targets by 2030 to meet 2 °C, and even more for 1.5 °C. In the context of 2 °C, the NDCs of the United States of America and the European Union lack ambition with respect to the approaches that emphasize responsibility; China's NDC projection falls short of satisfying any approach in 2030. In the context of 1.5 °C, only India, by implementing its most ambitious efforts by 2030, could be in line with most equity principles. For most countries, the NDCs would use most of their allowed emissions space for the entire 21 st century by 2030, posing a major challenge to transform to a pathway consistent with their fair contributions in the long-term.
Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science & PolicyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2017.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science & PolicyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2017.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Xu, Qingyu; Patankar, Neha; Lau, Michael; Zhang, Chuan; Jenkins, Jesse D.;This study employs an electricity system capacity panning model with detailed economic dispatch and unit commitment decisions/constraints to quantitatively answer two key questions: How does the enactment of the federal Inflation Reduction Act of 2022 impact the cost of electricity, greenhouse gas emissions, and investment in electricity capacity in the PJM Interconnection over the 2023-2035 period? Given new and expanded federal subsidies for clean electricity resources in the Inflation Reduction Act, what additional capacity investments and resource deployment would be required and at what cost for the PJM region to reduce greenhouse gas emissions 80-90% by 2035 while maintaining an affordable and reliable electricity supply? Executive summary: In August 2022, Congress passed and President Biden signed the Inflation Reduction Act (IRA), which enacts a comprehensive set of financial incentives (tax credits, grants, rebates, loans) that support all sources of carbon-free electricity, promote vehicle and building electrification and efficiency, and subsidize carbon capture and storage (CCS). The implementation of IRA means that the full financial weight of the federal government is now behind the clean energy transition. This will have transformative effects on the economics of decarbonization in the PJM Interconnection (and across the United States). IRA will spark a new, sustained period of growth in PJM electricity consumption, which could rise ~19% from 2021 to 2030. The law also subsidizes the cost of deploying new renewable energy capacity and maintaining the region’s existing nuclear fleet. As a result, this study finds that clean electricity could supply 60% [58-66% across sensitivities] of PJM demand in 2030, up from 48% [43-61%] without enactment of IRA. However, realizing this potential will require a dramatic acceleration in the pace of wind and solar interconnection and transmission expansion in the PJM Interconnection. The growth of lower-cost, carbon-free electricity under IRA will significantly reduce CO2 emissions from PJM power generation, which could fall 37% [3-66%] from 2019/2021 levels. In contrast, PJM emissions would increase 12% [0-15%] from 2021 levels without IRA. However, PJM emissions may rebound after 2032 when a production tax credit for existing nuclear reactors established by IRA is set to expire. Unless equivalent policy support is extended beyond 2032, our modeling finds 12 GW [0-33 GW] of the PJM nuclear fleet is likely to retire by 2035, with new natural gas capacity and generation increasing to fill the resulting gap and meet growing demand, reversing some of the emissions progress achieved through 2030. In addition to driving down greenhouse gas emissions, IRA also lowers the cost of electricity supply in the PJM region. We find the average cost of bulk electricity supply for PJM load serving entities (LSEs), including transmission expansion and state policy requirements, will be about $42/MWh [~$40-45/MWh] in 2030, about 5-10% lower than without IRA, and well below costs paid in 2019 ($50.2/MWh) and 2021 (~$61/MWh). The primary sources of cost savings are reduced wholesale energy prices, lower costs to meet state clean energy policy goals (due to federal subsidies), and growing demand (which spreads fixed costs over more MWh). While IRA puts the PJM region on a path to lower-cost electricity and lower greenhouse gas emissions, the new federal policy is not sufficient to drive deep decarbonization of the PJM interconnection on its own. Fortunately, by subsidizing the cost of all new carbon-free electricity resources, IRA also makes it cheaper and easier for PJM states to reduce emissions further while preserving affordability. Part 2 of this study presents a cost-optimized blueprint of the additional capacity investments and resource deployment required for the PJM region to deeply decarbonize over the 2023-2035 period. Specifically, we apply two stylized policy constraints and model the evolution of the PJM capacity mix and operations to meet those constraints: A clean electricity standard (CES) requiring increased shares of carbon-free electricity generation in the region (55% clean share by 2025, 70% by 2030, 85% by 2035), and; A CO2 emissions cap and trading scheme (cap & trade) requiring decreasing region-wide emissions (58% below 2005 emissions by 2025, 80% by 2030, 95% by 2035) This study finds that, due to passage of IRA, the PJM region could cut CO2 emissions from power generation by 80-90% by 2035 while keeping average bulk electricity supply costs for LSE’s comparable to or lower than levels experienced in recent years (2019 & 2021). However, deep decarbonization in the PJM region will require much more rapid expansion of low-carbon electricity resources and supportive transmission expansion above and beyond the rates of deployment made economical by IRA. By 2035, the region will also likely deploy more advanced ‘clean firm’ resources like gas power plants with carbon capture and storage (CCS) or long-duration electricity storage technologies (LDS), to replace coal- and gas-fired power capacity. We also identify and map several affordable resource portfolios and spatial patterns for clean electricity resource siting across the PJM region, demonstrating that the region has some flexibility to address local priorities and concerns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 551visibility views 551 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:MDPI AG Francesco Calise; Mário Costa; Qiuwang Wang; Xiliang Zhang; Neven Duić;doi: 10.3390/en11102520
handle: 11588/740883
EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Leng, L; Jia, H; Chen, AS; Zhu, DZ; Xu, T; Yu, S;handle: 10871/125025
Abstract The optimized green-grey infrastructures are promising solutions to combat the urban flood and water quality problems which have been severe owe to the increasing urbanization and climate change. However, the focusses in existing researches have been either on finding the best strategy by scenario analysis method or optimal design of LID practices under the hypothesis of unchanged grey infrastructures. Little is known regarding the synergistic effect of synchronous optimization design of both green and grey infrastructures. In the study, we conduct green-grey infrastructures synchronous optimization by modifying the decision variables of traditional simulation-optimization frameworks and investigate how external uncertainties will affect their performance. The methodology was applied to a case study in Suzhou, China. The results showed that although the cost of green-grey synchronous optimized scenarios is lower than that of green optimized only scenarios by 1.69–4.19 thousand USD per km2, the runoff/pollutants reductions of green-grey synchronous optimized scenarios are 0.11%–5.24% higher than that of green optimized only scenarios. In the green-grey synchronous optimized scenarios, green infrastructures can contribute to runoff/pollutants control by 50%–63%/62%–70%, while grey infrastructures can contribute to the remaining part by 37%–50%/30%–38%.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125025Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10871/125025Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.145831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Embargo end date: 01 Jan 2016 Portugal, Finland, Portugal, United Kingdom, SwitzerlandPublisher:SAGE Publications Publicly fundedFunded by:SSHRC, SNSF | The Politics of Climate C..., NSF | HSD: Collaborative Resear...SSHRC ,SNSF| The Politics of Climate Change: Options for Action in a Changing International Environment ,NSF| HSD: Collaborative Research: Social Networks as Agents of Change in Climate Change Policy MakingBroadbent, J; Sonnett, J; Botetzagias, I; Carson, M; Carvalho, A; Chien, Y-J; Edling, C; Fisher, D; Giouzepas, G; Haluza-DeLay, R; Hasegawa, K; Hirschi, C; Horta, A; Ikeda, K; Jin, J; Ku, D; Lahsen, M; Lee, H-C; Lin, T-LA; Malang, T; Ollmann, J; Payne, D; Pellissery, S; Price, S; Pulver, S; Sainz, J; Satoh, K; Saunders, C; Schmidt, L; Stoddart, MCJ; Swarnakar, P; Tatsumi, T; Tindall, D; Vaughter, P; Wagner, P; Yun, S-J; Zhengyi, S;handle: 10138/303363 , 10871/29754
Reducing global emissions will require a global cosmopolitan culture built from detailed attention to conflicting national climate change frames (interpretations) in media discourse. The authors analyze the global field of media climate change discourse using 17 diverse cases and 131 frames. They find four main conflicting dimensions of difference: validity of climate science, scale of ecological risk, scale of climate politics, and support for mitigation policy. These dimensions yield four clusters of cases producing a fractured global field. Positive values on the dimensions show modest association with emissions reductions. Data-mining media research is needed to determine trends in this global field.
CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Open Research ExeterArticle . 2016License: CC BY NCFull-Text: http://hdl.handle.net/10871/29754Data sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2019 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiUniversidade de Lisboa: Repositório.ULArticle . 2016Data sources: Universidade de Lisboa: Repositório.ULZurich Open Repository and ArchiveArticle . 2016License: CC BY NCData sources: Zurich Open Repository and Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/2378023116670660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, France, United Kingdom, United StatesPublisher:Elsevier BV Yutao Wang; Vincent Viguié; Neil A. Fromer; Zhu Liu; Zhu Liu; Zhu Liu; Dabo Guan; Jingru Liu; Zhifu Mi;Cities, the core of the global climate change mitigation and strategic low-carbon development, are shelters to more than half of the world population and responsible for three quarters of global energy consumption and greenhouse gas (GHG). This special volume (SV) provides a platform that promotes multi- and inter- disciplinary analyses and discussions on the climate change mitigation for cities. All papers are divided into four themes, including GHG emission inventory and accounting, climate change and urban sectors, climate change and sustainable development, and strategies and mitigation action plans. First, this SV provides methods for constructing emission inventory from both production and consumption perspectives. These methods are useful to improve the comprehensiveness and accuracy of carbon accounting for international cities. Second, the climate change affects urban sectors from various aspects; simultaneously, GHG emissions caused by activities in urban sectors affect the climate system. This SV focuses on mitigation policies and assessment of energy, transport, construction, and service sectors. Third, climate change mitigation of cities is closely connected to urban sustainable development. This SV explores the relationships between climate change mitigation with urbanization, ecosystems, air pollution, and extreme events. Fourth, climate change mitigation policies can be divided into two categories: quantity-based mechanism (e.g., carbon emission trading) and price-based mechanism (e.g., carbon tax). This SV provides experiences of local climate change mitigation all over the world and proposes the city-to-city cooperation on climate change mitigation.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 241 citations 241 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCaltech Authors (California Institute of Technology)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2018.10.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Oxford University Press (OUP) Shuyi Qiu; Xiaofang Chen; Xiaofang Chen; Guojin Luo; Yu Guo; Zheng Bian; Liming Li; Zhengming Chen; Xianping Wu; John S Ji;doi: 10.1093/ije/dyab191
pmid: 34536011
Abstract Background Estimates indicate that household air pollution caused by solid fuel burning accounted for about 1.03 million premature mortalities in China in 2016. In the country’s rural areas, more than half the population still relies on biomass fuels and coals for cooking and heating. Understanding the health impact of indoor air pollution and socioeconomic indicators is essential for the country to improve its developmental targets. We aimed to describe demographic and socioeconomic characteristics associated with solid fuel users in a rural area in China. We also estimated the risk of cardiovascular disease and all-cause mortality in association with solid fuel use and described the relationship between solid fuel use, socioeconomic status and mortality. We also measured the risk of long-term use, and the effect of ameliorative action, on mortality caused by cardiovascular disease and other causes. Methods We used the China Kadoorie Biobank (CKB) site in Pengzhou, Sichuan, China. We followed a cohort of 55 687 people over 2004–13. We calculated the mean and standard deviation among subgroups classified by fuel use types: gas, coal, wood and electricity (central heating additionally for heating). We tested the mediation effect using the stepwise method and Sobel test. We used Cox proportional models to estimate the risk of incidences of cardiovascular disease and mortality with survival days as the time scale, adjusted for age, gender, socioeconomic status, physical measurements, lifestyle, stove ventilation and fuel type used for other purposes. The survival days were defined as the follow-up days from the baseline survey till the date of death or 31 December 2013 if right-censored. We also calculated the absolute mortality rate difference (ARD) between the exposure group and the reference group. Results The study population had an average age of 51.0, and 61.9% of the individuals were female; 64.8% participants (n = 35 543) cooked regularly and 25.4% participants (n = 13 921) needed winter heating. With clean fuel users as the reference group, participant households that used solid fuel for cooking or heating both had a higher risk of all-cause mortality: hazard ratio (HR) for: cooking, 1.11 [95% confidence interval (CI) 1.02, 1.26]; heating, 1.34 (95% CI 1.16, 1.54). Solid fuel used for winter heating was associated with a higher risk of mortality caused by cerebrovascular disease: HR 1.64 (95% CI 1.12, 2.40); stroke: HR 1.70 (95% CI 1.13, 2.56); and cardiovascular disease: HR 1.49 (95% CI 1.10, 2.02). Low income and poor education level had a significant correlation with solid fuel used for cooking: odds ratio (OR) for income: 2.27 (95% CI 2.14, 2.41); education: 2.34 (95% CI 2.18, 2.53); and for heating: income: 2.69 (95% CI 2.46, 2.97); education: 2.05 (95% CI 1.88, 2.26), which may be potential mediators bridging the effects of socioeconomic status factors on cardiovascular disease and all-cause mortality. Solid fuel used for cooking and heating accounted for 42.4% and 81.1% of the effect of poor education and 55.2% and 76.0% of the effect of low income on all-cause mortality, respectively. The risk of all-cause mortality could be ameliorated by stopping regularly cooking and heating using solid fuel or switching from solid fuel to clean fuels: HR for cooking: 0.90 (95% CI 0.84, 0.96); heating: 0.76 (95% CI 0.64, 0.92). Conclusions Our study reinforces the evidence of an association between solid fuel use and risk of cardiovascular disease and all-cause mortality. We also assessed the effect of socioeconomic status as the potential mediator on mortality. As solid fuel use was a major contributor in the effect of socioeconomic status on cardiovascular disease and all-cause mortality, policies to improve access to clean fuels could reduce morbidity and mortality related to poor education and low income.
International Journa... arrow_drop_down International Journal of EpidemiologyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyab191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of EpidemiologyArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ije/dyab191&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Xunmin Ou; Zhiyi Yuan; Tianduo Peng; Zhenqing Sun; Sheng Zhou;doi: 10.3390/su9071184
CO2 emission resulted from fossil energy use is threatening human sustainability globally. This study focuses on the low-carbon transition of Hebei’s coal-dominated energy system by estimating its total end-use energy consumption, primary energy supply and resultant CO2 emission up to 2030, by employing an energy demand analysis model based on setting of the economic growth rate, industrial structure, industry/sector energy consumption intensity, energy supply structure, and CO2 emission factor. It is found that the total primary energy consumption in Hebei will be 471 and 431 million tons of coal equivalent (tce) in 2030 in our two defined scenarios (conventional development scenario and coordinated development scenario), which are 1.40 and 1.28 times of the level in 2015, respectively. The resultant full-chain CO2 emission will be 1027 and 916 million tons in 2030 in the two scenarios, which are 1.24 and 1.10 times of the level in 2015, respectively. The full-chain CO2 emission will peak in about 2025. It is found that the coal-dominated situation of energy structure and CO2 emission increasing trend in Hebei can be changed in the future in the coordinated development scenario, in which Beijing-Tianjin-Hebei area coordinated development strategy will be strengthened. The energy structure of Hebei can be optimised since the proportion of coal in total primary energy consumption can fall from around 80% in 2015 to below 30% in 2030 and the proportions of transferred electricity, natural gas, nuclear energy and renewable energy can increase rapidly. Some specific additional policy instruments are also suggested to support the low-carbon transition of energy system in Hebei under the framework of the coordinated development of Beijing-Tianjin-Hebei area, and with the support from the central government of China.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/7/1184/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9071184&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Elsevier BV Dabo Guan; Jinyue Yan; Jinyue Yan; Peng Gong; Zhu Liu; Wenjia Cai; Chi Zhang; Chi Zhang; Yi-Ming Wei; Zheng Li;In 2018, a total of US$166 billion global economic losses and a new high of 55.3 Gt of CO2 equivalent emission were generated by 831 climate-related extreme events. As the world's largest CO2 emitter, we reported China's recent progresses and pitfalls in climate actions to achieve climate mitigation targets (i.e., limit warming to 1.5–2°C above the pre-industrial level). We first summarized China's integrated actions (2015 onwards) that benefit both climate change mitigation and Sustainable Development Goals (SDGs). These projects include re-structuring organizations, establishing working goals and actions, amending laws and regulations at national level, as well as increasing social awareness at community level. We then pointed out the shortcomings in different regions and sectors. Based on these analyses, we proposed five recommendations to help China improving its climate policy strategies, which include: 1) restructuring the economy to balance short-term and long-term conflicts; 2) developing circular economy with recycling mechanism and infrastructure; 3) building up unified national standards and more accurate indicators; 4) completing market mechanism for green economy and encouraging green consumption; and 5) enhancing technology innovations and local incentives via bottom-up actions.
Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geography and Sustai... arrow_drop_down Geography and SustainabilityArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geosus.2020.09.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:IEEE Chuyuan Zhang; Tianyi Zhang; Shengsheng Cao; Yanxi Chen; Fuxin Du; Longfei Zhou; Haoran Ma; Ziyan He; Qikai Su; Guanghua Cheng; Jie Zheng; Shijun Lun; Shuqing Li; Wenyang Gao; Yajun Fang; Zejun Zhang;Our current society is facing challenges in both sustainability and environmental pollution due to fast urbanization, limited resources, and increasing senior population. Smart cities which aim to increase efficiency and convenience would not be able to solve fundamental challenges caused by urban lifestyles. In 2013, the Universal Village concept was proposed to enhance human-nature harmony through prudent use of technologies and to address the eco-challenges due to fast urbanization.This paper first studies the environmental implications due to urban lifestyles and proposes the suitable UV framework and detailed content of universal village lifestyle in order to address the eco-challenges. The paper then evaluates the development of current smart city technologies and assesses their validity with regard to the concept of Universal Village through systematic studies of several major intelligent systems.Specifically, this paper discusses the subject of connectivity from four perspectives: mutual interaction, feedback loop, dynamic information loop, and material cycle. The paper evaluates whether information feedback loops could be formed for these major systems, and also explores the mutual interaction and dependence among the seemingly independent major systems. We discover that mutual interaction connects the aforementioned systems into an interconnected network and naturally forms dynamic information loops in which the decision of one system may be the required input of another system or vice versa. This implies that proper functioning of these systems requires extensive information sharing among them. One event might dynamically trigger different events. The last connectivity is a material cycle. We explore the whole life cycle of products, including impact from lifestyle, customers’ need, product design, cloud manufacturing, sale channel, feedback collection from customers, reuse and recycling, scrapping, to final waste-disposal, etc., and study how to reduce the demand for resource and waste during the procedure. The idea is to include the perspective of UV lifestyle when designing products: considering the possibility in proactively reducing the need, sharing a product with different people, reusing product parts into the manufacturing, recycling reusable components of finished products before the products’ being fully disassembled, etc. The advantage is to reduce the need for products and to avoid manufacturing the same components from raw materials directly, which demands less resource.In summary, connectivity, as discussed from the four perspectives, would greatly contribute to the effectiveness and efficiency of our connected smart systems. Dynamic information loop helps coordinate resource allocation, decreases the collective costs, and reduces demand of natural resources from the natural environment, resulting in less damage to the environment which ultimately enhances system-wide harmony between human and its natural environment, and leads to human happiness in general.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/uv.2018.8642142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/uv.2018.8642142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 NetherlandsPublisher:Elsevier BV Pan, Xunzhang; den Elzen, Michel; Höhne, Niklas; Teng, Fei; Wang, Lining;In order to achieve the Paris Agreement goals of keeping the temperature rise well below 2 °C or even 1.5 °C, all countries would need to make fair and ambitious contributions to reducing emissions. A vast majority of countries have adopted reduction targets by 2030 in their Nationally Determined Contributions (NDCs). There are many alternative ways to analyze the fairness of national mitigation contributions. This article uses a model framework based on six equity principles of effort-sharing, to allocate countries’ reduction targets under global emissions scenarios consistent with meeting the Paris climate goals. It further compares these allocations with the NDCs. The analysis shows that most countries need to adopt more ambitious reduction targets by 2030 to meet 2 °C, and even more for 1.5 °C. In the context of 2 °C, the NDCs of the United States of America and the European Union lack ambition with respect to the approaches that emphasize responsibility; China's NDC projection falls short of satisfying any approach in 2030. In the context of 1.5 °C, only India, by implementing its most ambitious efforts by 2030, could be in line with most equity principles. For most countries, the NDCs would use most of their allowed emissions space for the entire 21 st century by 2030, posing a major challenge to transform to a pathway consistent with their fair contributions in the long-term.
Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science & PolicyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2017.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Environmental Science & PolicyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2017.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 2022Publisher:Zenodo Xu, Qingyu; Patankar, Neha; Lau, Michael; Zhang, Chuan; Jenkins, Jesse D.;This study employs an electricity system capacity panning model with detailed economic dispatch and unit commitment decisions/constraints to quantitatively answer two key questions: How does the enactment of the federal Inflation Reduction Act of 2022 impact the cost of electricity, greenhouse gas emissions, and investment in electricity capacity in the PJM Interconnection over the 2023-2035 period? Given new and expanded federal subsidies for clean electricity resources in the Inflation Reduction Act, what additional capacity investments and resource deployment would be required and at what cost for the PJM region to reduce greenhouse gas emissions 80-90% by 2035 while maintaining an affordable and reliable electricity supply? Executive summary: In August 2022, Congress passed and President Biden signed the Inflation Reduction Act (IRA), which enacts a comprehensive set of financial incentives (tax credits, grants, rebates, loans) that support all sources of carbon-free electricity, promote vehicle and building electrification and efficiency, and subsidize carbon capture and storage (CCS). The implementation of IRA means that the full financial weight of the federal government is now behind the clean energy transition. This will have transformative effects on the economics of decarbonization in the PJM Interconnection (and across the United States). IRA will spark a new, sustained period of growth in PJM electricity consumption, which could rise ~19% from 2021 to 2030. The law also subsidizes the cost of deploying new renewable energy capacity and maintaining the region’s existing nuclear fleet. As a result, this study finds that clean electricity could supply 60% [58-66% across sensitivities] of PJM demand in 2030, up from 48% [43-61%] without enactment of IRA. However, realizing this potential will require a dramatic acceleration in the pace of wind and solar interconnection and transmission expansion in the PJM Interconnection. The growth of lower-cost, carbon-free electricity under IRA will significantly reduce CO2 emissions from PJM power generation, which could fall 37% [3-66%] from 2019/2021 levels. In contrast, PJM emissions would increase 12% [0-15%] from 2021 levels without IRA. However, PJM emissions may rebound after 2032 when a production tax credit for existing nuclear reactors established by IRA is set to expire. Unless equivalent policy support is extended beyond 2032, our modeling finds 12 GW [0-33 GW] of the PJM nuclear fleet is likely to retire by 2035, with new natural gas capacity and generation increasing to fill the resulting gap and meet growing demand, reversing some of the emissions progress achieved through 2030. In addition to driving down greenhouse gas emissions, IRA also lowers the cost of electricity supply in the PJM region. We find the average cost of bulk electricity supply for PJM load serving entities (LSEs), including transmission expansion and state policy requirements, will be about $42/MWh [~$40-45/MWh] in 2030, about 5-10% lower than without IRA, and well below costs paid in 2019 ($50.2/MWh) and 2021 (~$61/MWh). The primary sources of cost savings are reduced wholesale energy prices, lower costs to meet state clean energy policy goals (due to federal subsidies), and growing demand (which spreads fixed costs over more MWh). While IRA puts the PJM region on a path to lower-cost electricity and lower greenhouse gas emissions, the new federal policy is not sufficient to drive deep decarbonization of the PJM interconnection on its own. Fortunately, by subsidizing the cost of all new carbon-free electricity resources, IRA also makes it cheaper and easier for PJM states to reduce emissions further while preserving affordability. Part 2 of this study presents a cost-optimized blueprint of the additional capacity investments and resource deployment required for the PJM region to deeply decarbonize over the 2023-2035 period. Specifically, we apply two stylized policy constraints and model the evolution of the PJM capacity mix and operations to meet those constraints: A clean electricity standard (CES) requiring increased shares of carbon-free electricity generation in the region (55% clean share by 2025, 70% by 2030, 85% by 2035), and; A CO2 emissions cap and trading scheme (cap & trade) requiring decreasing region-wide emissions (58% below 2005 emissions by 2025, 80% by 2030, 95% by 2035) This study finds that, due to passage of IRA, the PJM region could cut CO2 emissions from power generation by 80-90% by 2035 while keeping average bulk electricity supply costs for LSE’s comparable to or lower than levels experienced in recent years (2019 & 2021). However, deep decarbonization in the PJM region will require much more rapid expansion of low-carbon electricity resources and supportive transmission expansion above and beyond the rates of deployment made economical by IRA. By 2035, the region will also likely deploy more advanced ‘clean firm’ resources like gas power plants with carbon capture and storage (CCS) or long-duration electricity storage technologies (LDS), to replace coal- and gas-fired power capacity. We also identify and map several affordable resource portfolios and spatial patterns for clean electricity resource siting across the PJM region, demonstrating that the region has some flexibility to address local priorities and concerns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 551visibility views 551 download downloads 254 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7428830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:MDPI AG Francesco Calise; Mário Costa; Qiuwang Wang; Xiliang Zhang; Neven Duić;doi: 10.3390/en11102520
handle: 11588/740883
EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102520&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu