- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 6. Clean water
- NL
- Eindhoven University of Technology
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 6. Clean water
- NL
- Eindhoven University of Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECAAuthors: Solomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; +4 AuthorsFausto Gallucci
Fausto Gallucci in OpenAIRESolomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;Fausto Gallucci
Fausto Gallucci in OpenAIREA membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:Elsevier BV Funded by:EC | PROMECAEC| PROMECAAuthors: Solomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; +4 AuthorsFausto Gallucci
Fausto Gallucci in OpenAIRESolomon Assefa Wassie; Michele Colozzi;Fausto Gallucci;
Emma Palo; Lorena Mosca; Jose Antonio Medrano Jimenez; Stefania Taraschi; Giulio Galdieri;Fausto Gallucci
Fausto Gallucci in OpenAIREA membrane assisted process for green hydrogen production from a bioethanol derived feedstock is here developed and evaluated, starting from the conventional Steam Methane Reforming (SMR) process. Such a process is suitable for centralized hydrogen production, and is here analyzed for a large-scale H2 production unit with the capacity of 40.000 Nm3/h. The basic Steam Ethanol Reforming (SER) process scheme is modified in a membrane assisted process by integrating the Pd-membrane separation steps in the most suitable reaction steps. The membrane assisted process, configured in three alternative architectures (Open architecture, Membrane Reactor and Hybrid architecture) was evaluated in terms of efficiencies and hydrogen yields, obtaining a clear indication of improved process performance. The alternative membrane assisted process architectures are compared to the basic SER process and to the benchmark SMR process fed by natural gas, for an overall comparative assessment of the efficiency and specific CO2 emissions and for an economic analysis based on the operating expenditures.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019License: taverneData sources: Eindhoven University of Technology Research PortalInternational Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Hydrogen EnergyArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.08.206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Authors: Lopes Ferreira, HM (Helder);Garde, R;
Garde, R
Garde, R in OpenAIREFulli, G (Gianluca);
Kling, WL (Wil); +1 AuthorsFulli, G (Gianluca)
Fulli, G (Gianluca) in OpenAIRELopes Ferreira, HM (Helder);Garde, R;
Garde, R
Garde, R in OpenAIREFulli, G (Gianluca);
Kling, WL (Wil); Peças Lopes, JA (João);Fulli, G (Gianluca)
Fulli, G (Gianluca) in OpenAIREhandle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Netherlands, Netherlands, Netherlands, Netherlands, ItalyPublisher:Elsevier BV Authors: Lopes Ferreira, HM (Helder);Garde, R;
Garde, R
Garde, R in OpenAIREFulli, G (Gianluca);
Kling, WL (Wil); +1 AuthorsFulli, G (Gianluca)
Fulli, G (Gianluca) in OpenAIRELopes Ferreira, HM (Helder);Garde, R;
Garde, R
Garde, R in OpenAIREFulli, G (Gianluca);
Kling, WL (Wil); Peças Lopes, JA (João);Fulli, G (Gianluca)
Fulli, G (Gianluca) in OpenAIREhandle: 11583/2570345
In the current situation with the unprecedented deployment of clean technologies for electricity generation, it is natural to expect that storage will play an important role in electricity networks. This paper provides a qualitative methodology to select the appropriate technology or mix of technologies for different applications. The multiple comparisons according to different characteristics distinguish this paper from others about energy storage systems. Firstly, the different technologies available for energy storage, as discussed in the literature, are described and compared. The characteristics of the technologies are explained, including their current availability. In order to gain a better perspective, availability is cross-compared with maturity level. Moreover, information such as ratings, energy density, durability and costs is provided in table and graphic format for a straightforward comparison. Additionally, the different electric grid applications of energy storage technologies are described and categorised. For each of the categories, we describe the available technologies, both mature and potential. Finally, methods for connecting storage technologies are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 383 citations 383 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.02.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 NetherlandsPublisher:Elsevier BV Authors:Hensen, JLM (Jan);
Hensen, JLM (Jan)
Hensen, JLM (Jan) in OpenAIRELamberts, R (Roberto);
Negrao, COR (Cezar);Lamberts, R (Roberto)
Lamberts, R (Roberto) in OpenAIREThis article does not have an abstract.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00063-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00063-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 NetherlandsPublisher:Elsevier BV Authors:Hensen, JLM (Jan);
Hensen, JLM (Jan)
Hensen, JLM (Jan) in OpenAIRELamberts, R (Roberto);
Negrao, COR (Cezar);Lamberts, R (Roberto)
Lamberts, R (Roberto) in OpenAIREThis article does not have an abstract.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00063-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00063-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors:J.G.A. Scholte;
J.G.A. Scholte
J.G.A. Scholte in OpenAIREM. Balden;
M. Balden
M. Balden in OpenAIREB. Böswirth;
S. Elgeti; +11 AuthorsB. Böswirth
B. Böswirth in OpenAIREJ.G.A. Scholte;
J.G.A. Scholte
J.G.A. Scholte in OpenAIREM. Balden;
M. Balden
M. Balden in OpenAIREB. Böswirth;
S. Elgeti; H. Greuner; A. Herrmann;B. Böswirth
B. Böswirth in OpenAIREK. Hunger;
K. Hunger
K. Hunger in OpenAIREK. Krieger;
P. Leitenstern; A. Manhard;K. Krieger
K. Krieger in OpenAIRER. Neu;
R.C. van Schaik; V. Rohde; I. Zammuto;T.W. Morgan;
T.W. Morgan
T.W. Morgan in OpenAIREUsing liquid metals confined in capillary porous structures (CPSs) as a plasma-facing component (PFC) could prolong the lifetime of the divertor in the high heat flux area. However, the high atomic number of tin (Sn) limits its acceptable fraction in the main plasma. Therefore, a crucial step in developing this concept is to test it in a tokamak environment, particularly in the diverted plasma region, e.g. ASDEX Upgrade (AUG). In this paper, the design of liquid tin module (LTM) is explained, and the testing in the high heat flux device GLADIS before its use in AUG is presented. The LTM was additively manufactured using selective laser melting, consisting of a 1.5mm porous layer tungsten (W) directly attached to a solid W bulk. The LTM has a plasma-facing area of 16×40mm2 and was filled with 1.54g of Sn. In GLADIS, the module was exposed to power loads between 2 and 8MWm−2 for 1 up to 10s, first unfilled and later filled with Sn. The surface temperature was monitored with infrared imaging and pyrometry. The thermal response was used to compare with simulations in Ansys Mechanical, enabling a determination of the module’s effective thermal properties. Sn droplets could be observed on the infrared camera, until a surface temperature of about a 1000°C was reached. The enhanced wetting of tin on the plasma-facing surface, which was observed by a visible camera, suggests that there is a conditioning of the surface, possibly due to the removal of impurities and oxides. Subsequent examinations of the adjacent tile revealed minor Sn leakages emanating from the module’s edge. Furthermore, the module showed no indication of mechanical failure. Therefore, these results indicated that the LTM qualifies for the heat fluxes expected in ASDEX Upgrade.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors:J.G.A. Scholte;
J.G.A. Scholte
J.G.A. Scholte in OpenAIREM. Balden;
M. Balden
M. Balden in OpenAIREB. Böswirth;
S. Elgeti; +11 AuthorsB. Böswirth
B. Böswirth in OpenAIREJ.G.A. Scholte;
J.G.A. Scholte
J.G.A. Scholte in OpenAIREM. Balden;
M. Balden
M. Balden in OpenAIREB. Böswirth;
S. Elgeti; H. Greuner; A. Herrmann;B. Böswirth
B. Böswirth in OpenAIREK. Hunger;
K. Hunger
K. Hunger in OpenAIREK. Krieger;
P. Leitenstern; A. Manhard;K. Krieger
K. Krieger in OpenAIRER. Neu;
R.C. van Schaik; V. Rohde; I. Zammuto;T.W. Morgan;
T.W. Morgan
T.W. Morgan in OpenAIREUsing liquid metals confined in capillary porous structures (CPSs) as a plasma-facing component (PFC) could prolong the lifetime of the divertor in the high heat flux area. However, the high atomic number of tin (Sn) limits its acceptable fraction in the main plasma. Therefore, a crucial step in developing this concept is to test it in a tokamak environment, particularly in the diverted plasma region, e.g. ASDEX Upgrade (AUG). In this paper, the design of liquid tin module (LTM) is explained, and the testing in the high heat flux device GLADIS before its use in AUG is presented. The LTM was additively manufactured using selective laser melting, consisting of a 1.5mm porous layer tungsten (W) directly attached to a solid W bulk. The LTM has a plasma-facing area of 16×40mm2 and was filled with 1.54g of Sn. In GLADIS, the module was exposed to power loads between 2 and 8MWm−2 for 1 up to 10s, first unfilled and later filled with Sn. The surface temperature was monitored with infrared imaging and pyrometry. The thermal response was used to compare with simulations in Ansys Mechanical, enabling a determination of the module’s effective thermal properties. Sn droplets could be observed on the infrared camera, until a surface temperature of about a 1000°C was reached. The enhanced wetting of tin on the plasma-facing surface, which was observed by a visible camera, suggests that there is a conditioning of the surface, possibly due to the removal of impurities and oxides. Subsequent examinations of the adjacent tile revealed minor Sn leakages emanating from the module’s edge. Furthermore, the module showed no indication of mechanical failure. Therefore, these results indicated that the LTM qualifies for the heat fluxes expected in ASDEX Upgrade.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008 NetherlandsPublisher:IEEE Authors: Kessels, J.T.B.A.; Bosch, P.P.J. van den;The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source. Especially in a dynamical energy market, an on-line optimization algorithm is desirable since energy prices change over time. By construction, the proposed EM system can operate with, and without prediction information. If predictions are available, an electronic horizon is applied to anticipate on up-coming events and further optimize the strategy. Illustrative examples are given to explain the added value for both solutions. Also the situation where energy is transferred back to the grid is considered. © 2008 IEEE.
http://alexandria.tu... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2008Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2008Data sources: Eindhoven University of Technology Research PortalDANS (Data Archiving and Networked Services)Article . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ivs.2008.4621188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert http://alexandria.tu... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2008Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2008Data sources: Eindhoven University of Technology Research PortalDANS (Data Archiving and Networked Services)Article . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ivs.2008.4621188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2008 NetherlandsPublisher:IEEE Authors: Kessels, J.T.B.A.; Bosch, P.P.J. van den;The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source. Especially in a dynamical energy market, an on-line optimization algorithm is desirable since energy prices change over time. By construction, the proposed EM system can operate with, and without prediction information. If predictions are available, an electronic horizon is applied to anticipate on up-coming events and further optimize the strategy. Illustrative examples are given to explain the added value for both solutions. Also the situation where energy is transferred back to the grid is considered. © 2008 IEEE.
http://alexandria.tu... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2008Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2008Data sources: Eindhoven University of Technology Research PortalDANS (Data Archiving and Networked Services)Article . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ivs.2008.4621188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert http://alexandria.tu... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2008Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2008Data sources: Eindhoven University of Technology Research PortalDANS (Data Archiving and Networked Services)Article . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ivs.2008.4621188&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:MDPI AG Authors:Goda Perlaviciute;
Goda Perlaviciute
Goda Perlaviciute in OpenAIRELinda Steg;
Linda Steg
Linda Steg in OpenAIRENadja Contzen;
Sabine Roeser; +1 AuthorsNadja Contzen
Nadja Contzen in OpenAIREGoda Perlaviciute;
Goda Perlaviciute
Goda Perlaviciute in OpenAIRELinda Steg;
Linda Steg
Linda Steg in OpenAIRENadja Contzen;
Sabine Roeser;Nadja Contzen
Nadja Contzen in OpenAIRENicole Huijts;
Nicole Huijts
Nicole Huijts in OpenAIREEnergy projects aimed at a sustainable energy transition can trigger strong negative emotions and resistance from the public. While practitioners are increasingly realising that they cannot simply ignore public emotions, they struggle with how to deal with people’s emotional responses and how to secure public acceptability of sustainable energy projects. We argue that a first critical step in order to adequately address emotional responses to energy projects is to understand where these emotional responses come from. We introduce a value-based approach, which entails that different characteristics of energy projects may violate or support people’s core values, which evokes emotions in people. We present a theoretical framework of the relationship between people’s values, the (perceived) implications of energy projects for these values, and people’s emotional responses to energy projects. We give examples from case studies in the literature to substantiate our reasoning, and we offer directions for future research. Our novel approach provides critical insights for project developers, decision makers, engineers, and scientists who aim to better understand the human dimension of a sustainable energy transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 5visibility views 5 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:MDPI AG Authors:Goda Perlaviciute;
Goda Perlaviciute
Goda Perlaviciute in OpenAIRELinda Steg;
Linda Steg
Linda Steg in OpenAIRENadja Contzen;
Sabine Roeser; +1 AuthorsNadja Contzen
Nadja Contzen in OpenAIREGoda Perlaviciute;
Goda Perlaviciute
Goda Perlaviciute in OpenAIRELinda Steg;
Linda Steg
Linda Steg in OpenAIRENadja Contzen;
Sabine Roeser;Nadja Contzen
Nadja Contzen in OpenAIRENicole Huijts;
Nicole Huijts
Nicole Huijts in OpenAIREEnergy projects aimed at a sustainable energy transition can trigger strong negative emotions and resistance from the public. While practitioners are increasingly realising that they cannot simply ignore public emotions, they struggle with how to deal with people’s emotional responses and how to secure public acceptability of sustainable energy projects. We argue that a first critical step in order to adequately address emotional responses to energy projects is to understand where these emotional responses come from. We introduce a value-based approach, which entails that different characteristics of energy projects may violate or support people’s core values, which evokes emotions in people. We present a theoretical framework of the relationship between people’s values, the (perceived) implications of energy projects for these values, and people’s emotional responses to energy projects. We give examples from case studies in the literature to substantiate our reasoning, and we offer directions for future research. Our novel approach provides critical insights for project developers, decision makers, engineers, and scientists who aim to better understand the human dimension of a sustainable energy transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 73 citations 73 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 5visibility views 5 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10072526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Authors: Jccm Boukje Huijben;Rob Raven;
Rob Raven; Eleftheria Vasileiadou;Rob Raven
Rob Raven in OpenAIREThere is a huge gap between demand and supply of finance for energy transitions, and the financial and economic crisis have had a negative impact in the already meagre funds for transforming the energy system towards renewable sources. In this paper we explore whether crowdfunding for renewable energy, as a novel sociotechnical practice developed in a niche, has the potential to break through and transform both the energy and the financial regimes, utilising the Multi-Level Perspective theory. We empirically investigate crowdfunding platforms linked to renewable electricity projects in the Netherlands. The main conclusion is that the volume of crowdfunding today is low, but the dynamic of these projects holds potential. There is limited indication of learning processes until now, as well as limited support from regime actors, pointing at a low level of niche stabilization and break-through potential, which may however be related to the early stage of development of crowdfunding in the Netherlands. On the other hand, the heterogeneity of crowdfunders is very promising. Platforms dedicated to renewable electricity exclusively, and with an investment based business model seem to be the most successful. We show how governmental market regulation and support mechanisms are shaping crowdfunding as a business model, and discuss the implications for other countries.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2016Data sources: Eindhoven University of Technology Research PortalJournal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2016Data sources: Eindhoven University of Technology Research PortalJournal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Authors: Jccm Boukje Huijben;Rob Raven;
Rob Raven; Eleftheria Vasileiadou;Rob Raven
Rob Raven in OpenAIREThere is a huge gap between demand and supply of finance for energy transitions, and the financial and economic crisis have had a negative impact in the already meagre funds for transforming the energy system towards renewable sources. In this paper we explore whether crowdfunding for renewable energy, as a novel sociotechnical practice developed in a niche, has the potential to break through and transform both the energy and the financial regimes, utilising the Multi-Level Perspective theory. We empirically investigate crowdfunding platforms linked to renewable electricity projects in the Netherlands. The main conclusion is that the volume of crowdfunding today is low, but the dynamic of these projects holds potential. There is limited indication of learning processes until now, as well as limited support from regime actors, pointing at a low level of niche stabilization and break-through potential, which may however be related to the early stage of development of crowdfunding in the Netherlands. On the other hand, the heterogeneity of crowdfunders is very promising. Platforms dedicated to renewable electricity exclusively, and with an investment based business model seem to be the most successful. We show how governmental market regulation and support mechanisms are shaping crowdfunding as a business model, and discuss the implications for other countries.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2016Data sources: Eindhoven University of Technology Research PortalJournal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Journal of Cleaner ProductionArticle . 2016Data sources: Eindhoven University of Technology Research PortalJournal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 Netherlands, BelgiumPublisher:Elsevier BV Authors: Delbeke, JFA (Jochen); Janssens-Maenhout, G (Greet); Peerani, P (Paolo);handle: 1854/LU-411638
This study addresses the issue of alternative pathways for breeding plutonium in a 900 MWe three loop thermal pressurized water reactor (PWR), either fueled with uranium fuel (3.5% U-235) or with mixed fuel (20% MOX). During the operation of a nuclear reactor the in-core neutron flux and the ex-core neutron flux are monitored with flux detectors. At the places where those detectors operate, the guide thimbles and the vessel wall, respectively, the neutron flux can be used to irradiate material samples. This paper investigates whether it would be possible to produce plutonium by breeding it at the walls of a PWR vessel and/or in the guide thimbles. The neutron flux in the reactor and the corresponding multi-group spectra are estimated with Monte Carlo simulations for different positions at the vessel wall of a PWR operating with either UO2 or MOX. Then the irradiation of fresh uranium samples at the vessel wall and in the guide thimbles are calculated and the isotopic composition of the irradiated samples are determined. The minimum irradiation period and the necessary minimum amount of fresh uranium to breed different grades of plutonium are derived.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2007Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2006.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2007Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2006.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 Netherlands, BelgiumPublisher:Elsevier BV Authors: Delbeke, JFA (Jochen); Janssens-Maenhout, G (Greet); Peerani, P (Paolo);handle: 1854/LU-411638
This study addresses the issue of alternative pathways for breeding plutonium in a 900 MWe three loop thermal pressurized water reactor (PWR), either fueled with uranium fuel (3.5% U-235) or with mixed fuel (20% MOX). During the operation of a nuclear reactor the in-core neutron flux and the ex-core neutron flux are monitored with flux detectors. At the places where those detectors operate, the guide thimbles and the vessel wall, respectively, the neutron flux can be used to irradiate material samples. This paper investigates whether it would be possible to produce plutonium by breeding it at the walls of a PWR vessel and/or in the guide thimbles. The neutron flux in the reactor and the corresponding multi-group spectra are estimated with Monte Carlo simulations for different positions at the vessel wall of a PWR operating with either UO2 or MOX. Then the irradiation of fresh uranium samples at the vessel wall and in the guide thimbles are calculated and the isotopic composition of the irradiated samples are determined. The minimum irradiation period and the necessary minimum amount of fresh uranium to breed different grades of plutonium are derived.
Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2007Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2006.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Engineering ... arrow_drop_down Nuclear Engineering and DesignArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGhent University Academic BibliographyArticle . 2007Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nucengdes.2006.12.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:MDPI AG Authors: Madis Talmar;A. Georges L. Romme;
Rianne Valkenburg;A. Georges L. Romme
A. Georges L. Romme in OpenAIRETo address major threats to the sustainability and quality of life in urban settings, many municipalities have started exploring routes toward smarter cities to, for example, lower their energy consumption and carbon footprint. These explorations, in the form of living labs or other pilot projects, often suffer from major problems in scaling up the initial try-outs. In this study, we identify the mechanisms that facilitate the diffusion of smart city solutions, which are developed with public funds but typically lack dedicated resources to spur the diffusion of these solutions within the same municipality as well as toward other municipalities. We introduce the construct of embedded replication potential, defined as the capacity of an original project to be either scaled up locally or replicated elsewhere. Subsequently, empirical findings from a study of smart lighting projects in several municipalities in northwestern Europe serve to develop a checklist-based tool for assessing the embedded replication potential of an initial project. This tool can also be used to assess the replication potential of other smart city projects.
Smart Cities arrow_drop_down Smart CitiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2624-6511/5/2/32/pdfData sources: Multidisciplinary Digital Publishing InstituteSmart CitiesArticle . 2022License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/smartcities5020032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smart Cities arrow_drop_down Smart CitiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2624-6511/5/2/32/pdfData sources: Multidisciplinary Digital Publishing InstituteSmart CitiesArticle . 2022License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/smartcities5020032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:MDPI AG Authors: Madis Talmar;A. Georges L. Romme;
Rianne Valkenburg;A. Georges L. Romme
A. Georges L. Romme in OpenAIRETo address major threats to the sustainability and quality of life in urban settings, many municipalities have started exploring routes toward smarter cities to, for example, lower their energy consumption and carbon footprint. These explorations, in the form of living labs or other pilot projects, often suffer from major problems in scaling up the initial try-outs. In this study, we identify the mechanisms that facilitate the diffusion of smart city solutions, which are developed with public funds but typically lack dedicated resources to spur the diffusion of these solutions within the same municipality as well as toward other municipalities. We introduce the construct of embedded replication potential, defined as the capacity of an original project to be either scaled up locally or replicated elsewhere. Subsequently, empirical findings from a study of smart lighting projects in several municipalities in northwestern Europe serve to develop a checklist-based tool for assessing the embedded replication potential of an initial project. This tool can also be used to assess the replication potential of other smart city projects.
Smart Cities arrow_drop_down Smart CitiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2624-6511/5/2/32/pdfData sources: Multidisciplinary Digital Publishing InstituteSmart CitiesArticle . 2022License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/smartcities5020032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Smart Cities arrow_drop_down Smart CitiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2624-6511/5/2/32/pdfData sources: Multidisciplinary Digital Publishing InstituteSmart CitiesArticle . 2022License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/smartcities5020032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Wiley Funded by:EC | NANOENABLEDPVEC| NANOENABLEDPVAuthors:Leon W. Veldhuizen;
Leon W. Veldhuizen
Leon W. Veldhuizen in OpenAIREGede W.P. Adhyaksa;
Gede W.P. Adhyaksa
Gede W.P. Adhyaksa in OpenAIREMirjam Theelen;
Mirjam Theelen
Mirjam Theelen in OpenAIREErik C. Garnett;
+1 AuthorsErik C. Garnett
Erik C. Garnett in OpenAIRELeon W. Veldhuizen;
Leon W. Veldhuizen
Leon W. Veldhuizen in OpenAIREGede W.P. Adhyaksa;
Gede W.P. Adhyaksa
Gede W.P. Adhyaksa in OpenAIREMirjam Theelen;
Mirjam Theelen
Mirjam Theelen in OpenAIREErik C. Garnett;
Erik C. Garnett
Erik C. Garnett in OpenAIRERuud E.I. Schropp;
Ruud E.I. Schropp
Ruud E.I. Schropp in OpenAIREdoi: 10.1002/pip.2889
AbstractIn this study, we assess the charge carrier diffusive transport quality of traditional and emerging thin‐film photoactive absorber materials used for photovoltaic applications. We use a steady‐state photocarrier grating technique, which has so far been predominantly used for amorphous silicon‐based materials, to obtain ambipolar diffusion lengths as well as minority and majority carrier mobility‐lifetime products. The measurements are performed at volume‐averaged generation rates of G = 1020–1021 cm−3 s−1 and low electric field strengths of E = 20–200 V cm−1. The absorbing capability of the materials is analysed by calculating an effective optical absorption depth, and we compare its value with the obtained electronic ambipolar diffusion length. The effective absorption depths are independent of the band‐gap values so that our assessment is also relevant for multijunction solar cells. We observe that for silicon‐based thin‐film materials, the ambipolar diffusion length (with a value lower than 150 nm) is more than twice as short as their effective absorption depth, while for copper indium gallium selenide chalcopyrite and halide perovskite materials, the diffusion length (with a value up to 367 nm) is similar or larger than the effective absorption depth. The presented method can be used as a rapid assessment of the optoelectronic quality of photoactive thin‐film materials. Copyright © 2017 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Progress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1002/pip....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Progress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1002/pip....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Wiley Funded by:EC | NANOENABLEDPVEC| NANOENABLEDPVAuthors:Leon W. Veldhuizen;
Leon W. Veldhuizen
Leon W. Veldhuizen in OpenAIREGede W.P. Adhyaksa;
Gede W.P. Adhyaksa
Gede W.P. Adhyaksa in OpenAIREMirjam Theelen;
Mirjam Theelen
Mirjam Theelen in OpenAIREErik C. Garnett;
+1 AuthorsErik C. Garnett
Erik C. Garnett in OpenAIRELeon W. Veldhuizen;
Leon W. Veldhuizen
Leon W. Veldhuizen in OpenAIREGede W.P. Adhyaksa;
Gede W.P. Adhyaksa
Gede W.P. Adhyaksa in OpenAIREMirjam Theelen;
Mirjam Theelen
Mirjam Theelen in OpenAIREErik C. Garnett;
Erik C. Garnett
Erik C. Garnett in OpenAIRERuud E.I. Schropp;
Ruud E.I. Schropp
Ruud E.I. Schropp in OpenAIREdoi: 10.1002/pip.2889
AbstractIn this study, we assess the charge carrier diffusive transport quality of traditional and emerging thin‐film photoactive absorber materials used for photovoltaic applications. We use a steady‐state photocarrier grating technique, which has so far been predominantly used for amorphous silicon‐based materials, to obtain ambipolar diffusion lengths as well as minority and majority carrier mobility‐lifetime products. The measurements are performed at volume‐averaged generation rates of G = 1020–1021 cm−3 s−1 and low electric field strengths of E = 20–200 V cm−1. The absorbing capability of the materials is analysed by calculating an effective optical absorption depth, and we compare its value with the obtained electronic ambipolar diffusion length. The effective absorption depths are independent of the band‐gap values so that our assessment is also relevant for multijunction solar cells. We observe that for silicon‐based thin‐film materials, the ambipolar diffusion length (with a value lower than 150 nm) is more than twice as short as their effective absorption depth, while for copper indium gallium selenide chalcopyrite and halide perovskite materials, the diffusion length (with a value up to 367 nm) is similar or larger than the effective absorption depth. The presented method can be used as a rapid assessment of the optoelectronic quality of photoactive thin‐film materials. Copyright © 2017 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Progress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1002/pip....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Progress in Photovoltaics Research and ApplicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefProgress in Photovoltaics Research and ApplicationsArticle . 2017Data sources: Eindhoven University of Technology Research Portalhttp://dx.doi.org/10.1002/pip....Article . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu