Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
28 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Open Source
  • 13. Climate action
  • 12. Responsible consumption
  • PK

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kamal, Atif;
    Kamal, Atif
    ORCID
    Harvested from ORCID Public Data File

    Kamal, Atif in OpenAIRE
    orcid Malik, Riffat Naseem;
    Malik, Riffat Naseem
    ORCID
    Harvested from ORCID Public Data File

    Malik, Riffat Naseem in OpenAIRE
    orcid MARTELLINI, TANIA;
    MARTELLINI, TANIA
    ORCID
    Harvested from ORCID Public Data File

    MARTELLINI, TANIA in OpenAIRE
    orcid CINCINELLI, ALESSANDRA;
    CINCINELLI, ALESSANDRA
    ORCID
    Harvested from ORCID Public Data File

    CINCINELLI, ALESSANDRA in OpenAIRE

    The aim of this study was to determine the abundance and distribution of polycyclic aromatic hydrocarbons (PAHs) in dust samples collected from the selected professional cooking workplaces (WCs) and residential household cooking areas (WRs), where traditional and primitive cooking practices are still prevelent. Another aim of this study was to investigate the carcinogenic risk for Pakistani human exposure to dust-bound PAHs via the routes of inhalation, ingestion, and dermal contact. Generally, the concentration of individual congeners of PAHs in surface dust samples of WC sites was higher than those measured in WR sites (p < 0.05). The benzo(a)pyrene (B(a)P), a very high carcinogenic compound, was present in the dust samples from WC sites in the highest mean concentration (630 ng g(-1) dry weight (d.w.)). The BaP mean concentration in WC workplaces was almost eight times higher than the mean value found in WR exposure sites. Moreover, the average concentration of ∑PAHs, combustion origin PAHs (∑COMB) and sum total of 7-carcinogenic PAHs (∑7-carcinogens) were also significantly higher in WC dusts samples than that in WR workplaces. Principal component analysis (PCA) and diagnostic ratios suggested coal/wood combustion as major PAH emission sources in both exposure sites. The average incremental lifetime cancer risk (ILCR) suggested a moderate to potential high cancer risk for adults and children exposed to dust-bound PAHs in both exposure sites, in particular via both dermal and ingestion contact pathways.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kamal, Atif;
    Kamal, Atif
    ORCID
    Harvested from ORCID Public Data File

    Kamal, Atif in OpenAIRE
    orcid Malik, Riffat Naseem;
    Malik, Riffat Naseem
    ORCID
    Harvested from ORCID Public Data File

    Malik, Riffat Naseem in OpenAIRE
    orcid MARTELLINI, TANIA;
    MARTELLINI, TANIA
    ORCID
    Harvested from ORCID Public Data File

    MARTELLINI, TANIA in OpenAIRE
    orcid CINCINELLI, ALESSANDRA;
    CINCINELLI, ALESSANDRA
    ORCID
    Harvested from ORCID Public Data File

    CINCINELLI, ALESSANDRA in OpenAIRE

    The aim of this study was to determine the abundance and distribution of polycyclic aromatic hydrocarbons (PAHs) in dust samples collected from the selected professional cooking workplaces (WCs) and residential household cooking areas (WRs), where traditional and primitive cooking practices are still prevelent. Another aim of this study was to investigate the carcinogenic risk for Pakistani human exposure to dust-bound PAHs via the routes of inhalation, ingestion, and dermal contact. Generally, the concentration of individual congeners of PAHs in surface dust samples of WC sites was higher than those measured in WR sites (p < 0.05). The benzo(a)pyrene (B(a)P), a very high carcinogenic compound, was present in the dust samples from WC sites in the highest mean concentration (630 ng g(-1) dry weight (d.w.)). The BaP mean concentration in WC workplaces was almost eight times higher than the mean value found in WR exposure sites. Moreover, the average concentration of ∑PAHs, combustion origin PAHs (∑COMB) and sum total of 7-carcinogenic PAHs (∑7-carcinogens) were also significantly higher in WC dusts samples than that in WR workplaces. Principal component analysis (PCA) and diagnostic ratios suggested coal/wood combustion as major PAH emission sources in both exposure sites. The average incremental lifetime cancer risk (ILCR) suggested a moderate to potential high cancer risk for adults and children exposed to dust-bound PAHs in both exposure sites, in particular via both dermal and ingestion contact pathways.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Science and Pollution Research
    Article . 2015 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdullah Nawaz; orcid Waseem Raza;
    Waseem Raza
    ORCID
    Harvested from ORCID Public Data File

    Waseem Raza in OpenAIRE
    orcid Hajera Gul;
    Hajera Gul
    ORCID
    Harvested from ORCID Public Data File

    Hajera Gul in OpenAIRE
    Abdullah Khan Durrani; +3 Authors

    In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Colloid and Interface Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Colloid and Interface Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdullah Nawaz; orcid Waseem Raza;
    Waseem Raza
    ORCID
    Harvested from ORCID Public Data File

    Waseem Raza in OpenAIRE
    orcid Hajera Gul;
    Hajera Gul
    ORCID
    Harvested from ORCID Public Data File

    Hajera Gul in OpenAIRE
    Abdullah Khan Durrani; +3 Authors

    In this research, efforts were put to demonstrate synergistic interactions between bioenergy generation and wastewater treatment. The extent of such synergistic effect was assessed against wastewater effluents released from the beverage industry through the operation of a membrane-less truncated conical (TC) microbial fuel cell (MFC). A graphite-based reactor was operated for five cycles in batch mode using beverage industry wastewater as an organic substrate. Maximum bioelectricity produced on the fifth operating cycle corresponded to a voltage of 338 mV and a power of 1.14 mW at 100 Ω. The MFC recorded a higher substrate degradation rate (0.84 kg of chemical oxygen demand [COD]/m3-day) accompanied by the development of an electroactive biofilm and polarization behavior (e.g., a reduction in internal resistance from 323 Ω to 197 Ω over five operation cycles). Cyclic voltammetry showed a maximum performance of the biofilm during the fifth cycle (through its enrichment) as interpreted by oxidation and reduction currents of 2.48 and -2.21 mA, respectively. The performance of the proposed MFC was superior to other designs reported previously in both effluent treatment and bioenergy generation. A maximum treatment efficiency of 84.4% (in 385 h) was seen at an organic load (COD) of 3500 mg/L with the specific power yield (0.504 W/Kg of substrate (COD) removal) and volumetric power yield (15.03 W/m3). Our experimental studies support that the proposed system could be upscaled to realize the commercial operation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Colloid and Interface Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Colloid and Interface Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azmat, Muhammad; Ilyas, Fatima; Sarwar, Afia; Huggel, Christian; +5 Authors

    Aim of this study is to quantify the impacts of climate change on phenology and yield of winter wheat in rainfed and irrigated regions of Pakistan by using integration of two well-known crop models including STICS and APSIM with CORDEX-SA regional climate models (RCMs). A number of different adaptation strategies based on early sowing (i.e. S1:10 and S2:20 days), irrigation (I1:15% and I2:30% additional water) and a combination of sowing and irrigation adaptations were examined to recover the potential losses that would occur due to climate change. The data for the wheat phenology, biomass (t/ha) at different stages and yield (t/ha) was obtained from several experiments at national research institutes in Pakistan under both rainfed and irrigated conditions. After calibration and validation of both crop models (STICS and APSIM), the current climate data were replaced with the CORDEX-SA RCM-projections for climate change impact analysis. A significant rising and declining trends were observed in temperature and precipitation patterns, respectively, for the selected study regions. Consequently, a substantial impact of climate change on wheat phenology (anthesis stage, maturity stage, growing length), biomass (t/ha) and yield (t/ha) was observed under scenario periods for RCP4.5 and RCP8.5. Additionally, the adaptation strategies on wheat for rainfed regions showed a substantial improvement in wheat biomass and yield simulated by STICS model particularly for sowing-2 under RCP4.5. Irrigated regions showed more improvement for irrigation-2 (I2) and combination of sowing-1 + irrigation-2 (S1 + I2) using the STICS model under both RCPs. Overall, it was observed that changes in crop phenology had a stronger impact in terms of crop yield for RCP8.5 as compare to RCP4.5. This study provides a valuable understanding and way forward for the better wheat management under changes in precipitation and temperature patterns. The study also discuss in detail, the adaptation strategies to cope with potential damage, over two different irrigation zones (rainfed and irrigated) in Pakistan.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    addClaim
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://dx.doi.org/10.5167/uzh...
      Other literature type . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Azmat, Muhammad; Ilyas, Fatima; Sarwar, Afia; Huggel, Christian; +5 Authors

    Aim of this study is to quantify the impacts of climate change on phenology and yield of winter wheat in rainfed and irrigated regions of Pakistan by using integration of two well-known crop models including STICS and APSIM with CORDEX-SA regional climate models (RCMs). A number of different adaptation strategies based on early sowing (i.e. S1:10 and S2:20 days), irrigation (I1:15% and I2:30% additional water) and a combination of sowing and irrigation adaptations were examined to recover the potential losses that would occur due to climate change. The data for the wheat phenology, biomass (t/ha) at different stages and yield (t/ha) was obtained from several experiments at national research institutes in Pakistan under both rainfed and irrigated conditions. After calibration and validation of both crop models (STICS and APSIM), the current climate data were replaced with the CORDEX-SA RCM-projections for climate change impact analysis. A significant rising and declining trends were observed in temperature and precipitation patterns, respectively, for the selected study regions. Consequently, a substantial impact of climate change on wheat phenology (anthesis stage, maturity stage, growing length), biomass (t/ha) and yield (t/ha) was observed under scenario periods for RCP4.5 and RCP8.5. Additionally, the adaptation strategies on wheat for rainfed regions showed a substantial improvement in wheat biomass and yield simulated by STICS model particularly for sowing-2 under RCP4.5. Irrigated regions showed more improvement for irrigation-2 (I2) and combination of sowing-1 + irrigation-2 (S1 + I2) using the STICS model under both RCPs. Overall, it was observed that changes in crop phenology had a stronger impact in terms of crop yield for RCP8.5 as compare to RCP4.5. This study provides a valuable understanding and way forward for the better wheat management under changes in precipitation and temperature patterns. The study also discuss in detail, the adaptation strategies to cope with potential damage, over two different irrigation zones (rainfed and irrigated) in Pakistan.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    addClaim
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://dx.doi.org/10.5167/uzh...
      Other literature type . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ahmad Zuhairi Abdullah;
    Ahmad Zuhairi Abdullah
    ORCID
    Harvested from ORCID Public Data File

    Ahmad Zuhairi Abdullah in OpenAIRE
    orcid Muhammad Ayoub;
    Muhammad Ayoub
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Ayoub in OpenAIRE
    orcid Sami Ullah;
    Sami Ullah
    ORCID
    Harvested from ORCID Public Data File

    Sami Ullah in OpenAIRE
    Sami Ullah; +3 Authors

    The activity of Co3O4 prepared by different methods was examined for decomposition of N2O in the presence of 2% oxygen concentration. This N2O gas is also a part of NOx gases and it is also nominated as a greenhouse gas that is a big threat for future environment due to very stable compound and having long life many and more than CO2. It is very difficult to make unstable or decompose N2O compound especially at low temperature. Catalytical decomposition is ultimate way to convert N2O into environmental friendly gases. In the present study, Co3O4 was prepared by different methods and used as a catalyst for this purpose. In the preparation of Co3O4, three different methods were used namely sol–gel method (Co3O4‐S), calcination method (Co3O4‐C), and the co‐precipitation method (Co3O4‐P). The prepared materials were well characterized by TEM, TGA, XRD, and BET surface techniques. These three different preparation methods of Co3O4 were performed to optimize for N2O decomposition. The experimental results showed that the catalytic activities of Co3O4 strongly depended on the Na/Co molar ratio and pH of an alkaline solution during Co3O4 preparation other than reaction temperature and time parameters. The optimized catalyst 1% NaOH + 1 M NH4OH/Co3O4‐P was observed highly active at optimum pH value 9.8 and Na/Co molar ratio 0.0120. The highest activity of this optimized catalyst for N2O decomposition was found 98% at 400°C while 95%, 89%, 78%, and 68% were recorded at 350°C, 300°C, 250°C and 200°C, respectively. © 2019 American Institute of Chemical Engineers Environ Prog, 38:e13129, 2019

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Progress & Sustainable Energy
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Progress & Sustainable Energy
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ahmad Zuhairi Abdullah;
    Ahmad Zuhairi Abdullah
    ORCID
    Harvested from ORCID Public Data File

    Ahmad Zuhairi Abdullah in OpenAIRE
    orcid Muhammad Ayoub;
    Muhammad Ayoub
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Ayoub in OpenAIRE
    orcid Sami Ullah;
    Sami Ullah
    ORCID
    Harvested from ORCID Public Data File

    Sami Ullah in OpenAIRE
    Sami Ullah; +3 Authors

    The activity of Co3O4 prepared by different methods was examined for decomposition of N2O in the presence of 2% oxygen concentration. This N2O gas is also a part of NOx gases and it is also nominated as a greenhouse gas that is a big threat for future environment due to very stable compound and having long life many and more than CO2. It is very difficult to make unstable or decompose N2O compound especially at low temperature. Catalytical decomposition is ultimate way to convert N2O into environmental friendly gases. In the present study, Co3O4 was prepared by different methods and used as a catalyst for this purpose. In the preparation of Co3O4, three different methods were used namely sol–gel method (Co3O4‐S), calcination method (Co3O4‐C), and the co‐precipitation method (Co3O4‐P). The prepared materials were well characterized by TEM, TGA, XRD, and BET surface techniques. These three different preparation methods of Co3O4 were performed to optimize for N2O decomposition. The experimental results showed that the catalytic activities of Co3O4 strongly depended on the Na/Co molar ratio and pH of an alkaline solution during Co3O4 preparation other than reaction temperature and time parameters. The optimized catalyst 1% NaOH + 1 M NH4OH/Co3O4‐P was observed highly active at optimum pH value 9.8 and Na/Co molar ratio 0.0120. The highest activity of this optimized catalyst for N2O decomposition was found 98% at 400°C while 95%, 89%, 78%, and 68% were recorded at 350°C, 300°C, 250°C and 200°C, respectively. © 2019 American Institute of Chemical Engineers Environ Prog, 38:e13129, 2019

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Progress & Sustainable Energy
    Article . 2019 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Progress & Sustainable Energy
      Article . 2019 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Muhammad Arshad;
    Muhammad Arshad
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Arshad in OpenAIRE
    Harald Kächele; orcid Timothy J. Krupnik;
    Timothy J. Krupnik
    ORCID
    Harvested from ORCID Public Data File

    Timothy J. Krupnik in OpenAIRE
    orcid T. S. Amjath-Babu;
    T. S. Amjath-Babu
    ORCID
    Harvested from ORCID Public Data File

    T. S. Amjath-Babu in OpenAIRE
    +4 Authors

    Many studies have examined the impact of climatic variability on agricultural productivity, although an understanding of these effects on farmland values and their relationship to farmers’ decisions to adapt and modify their land-use practices remains nascent in developing nations. We estimated the impacts of the deviation in our study year's (2012) temperature and precipitation patterns from medium-term (1980–2011) climatic patterns on farmland values in Pakistan. This was accomplished by employing a modified form of a Ricardian regression model. We also examined farmers’ perceptions of climate change during this period, as well as their perceptions of climate change impacts on farm productivity, in addition to past and anticipated farm adaptation strategies. Our results indicate that positive temperature deviation from the medium-term mean – indicative of climatic change – affects farmland values in Pakistan. Deviation in annual cumulative precipitation conversely appears to have no significant impact. Estimates of the marginal impact of temperature deviation suggested a slight but negative linear relationship with farmland values. The location of farms in areas where farmers can avail financial or extension services conversely had a positive impact on farmland values, as did the availability of irrigation facilities. Our analysis of farmers’ perceptions of climate change and their consequent adaptation behavior indicated a relatively high degree of awareness of climatic variability that influenced a number of proactive and future anticipated farm adaptation strategies. Examples included increased use of irrigation and farm enterprise diversification, as well as land-use change, including shifting from agriculture into alternative land uses. National policy in Pakistan underscores the importance of maintaining a productive rural agricultural sector. Our findings consequently highlight the importance of appropriate adaptation strategies to maintain both farm productivity and farmland values in much of Pakistan. The implications of increased extension and financial services to enhance farmers’ potential for climate change adaptation are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2017
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Other literature type . 2017
    Data sources: Research@WUR
    addClaim
    70
    citations70
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2017
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Other literature type . 2017
      Data sources: Research@WUR
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Muhammad Arshad;
    Muhammad Arshad
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Arshad in OpenAIRE
    Harald Kächele; orcid Timothy J. Krupnik;
    Timothy J. Krupnik
    ORCID
    Harvested from ORCID Public Data File

    Timothy J. Krupnik in OpenAIRE
    orcid T. S. Amjath-Babu;
    T. S. Amjath-Babu
    ORCID
    Harvested from ORCID Public Data File

    T. S. Amjath-Babu in OpenAIRE
    +4 Authors

    Many studies have examined the impact of climatic variability on agricultural productivity, although an understanding of these effects on farmland values and their relationship to farmers’ decisions to adapt and modify their land-use practices remains nascent in developing nations. We estimated the impacts of the deviation in our study year's (2012) temperature and precipitation patterns from medium-term (1980–2011) climatic patterns on farmland values in Pakistan. This was accomplished by employing a modified form of a Ricardian regression model. We also examined farmers’ perceptions of climate change during this period, as well as their perceptions of climate change impacts on farm productivity, in addition to past and anticipated farm adaptation strategies. Our results indicate that positive temperature deviation from the medium-term mean – indicative of climatic change – affects farmland values in Pakistan. Deviation in annual cumulative precipitation conversely appears to have no significant impact. Estimates of the marginal impact of temperature deviation suggested a slight but negative linear relationship with farmland values. The location of farms in areas where farmers can avail financial or extension services conversely had a positive impact on farmland values, as did the availability of irrigation facilities. Our analysis of farmers’ perceptions of climate change and their consequent adaptation behavior indicated a relatively high degree of awareness of climatic variability that influenced a number of proactive and future anticipated farm adaptation strategies. Examples included increased use of irrigation and farm enterprise diversification, as well as land-use change, including shifting from agriculture into alternative land uses. National policy in Pakistan underscores the importance of maintaining a productive rural agricultural sector. Our findings consequently highlight the importance of appropriate adaptation strategies to maintain both farm productivity and farmland values in much of Pakistan. The implications of increased extension and financial services to enhance farmers’ potential for climate change adaptation are discussed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article . 2017
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Other literature type . 2017
    Data sources: Research@WUR
    addClaim
    70
    citations70
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article . 2017
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Other literature type . 2017
      Data sources: Research@WUR
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Habib, Muhammad Salman;
    Habib, Muhammad Salman
    ORCID
    Harvested from ORCID Public Data File

    Habib, Muhammad Salman in OpenAIRE
    orcid Sarkar, Biswajit;
    Sarkar, Biswajit
    ORCID
    Harvested from ORCID Public Data File

    Sarkar, Biswajit in OpenAIRE
    orcid Tayyab, Muhammad;
    Tayyab, Muhammad
    ORCID
    Harvested from ORCID Public Data File

    Tayyab, Muhammad in OpenAIRE
    orcid Saleem, Muhammad Wajid;
    Saleem, Muhammad Wajid
    ORCID
    Harvested from ORCID Public Data File

    Saleem, Muhammad Wajid in OpenAIRE
    +4 Authors

    The phenomena of global warming have increased the frequency of natural disasters. These disasters generate thousands of tons of waste and cause loss of human lives, environmental damages, and economic losses every year. Currently, disaster response policies are reactive in nature to bring the community back to normal routine. However, increased resilience against future disasters can be achieved by working on long-term planning and setting goals for ecological, economic, and social sustainability in disaster response policies. Keeping in view the importance of the considered issue, this study proposes a large-scale disaster waste management supply chain model, considering economic aspect via total waste processing, environmental aspect by greenhouse gas emissions from disaster waste processing, and social aspect by job opportunities generated during waste processing. To demonstrate the applicability of the proposed supply chain model, numerical experiments are performed on a large-scale case problem. Results show that there is a strong trade-off among the dimensions of sustainability. If decision makers want to achieve higher satisfaction levels against environmental and social objectives, the operational cost of waste management will increase accordingly. Numerical studies obtain the results in accordance with the values of the confidence level of decision makers and coefficient of compensation decided by the managers which also provides the flexibility for the decision makers of developing countries to obtain preferred compromised solution in accordance with their own preferences for the dimensions of sustainability during disaster waste management operation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2019
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    74
    citations74
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2019
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Habib, Muhammad Salman;
    Habib, Muhammad Salman
    ORCID
    Harvested from ORCID Public Data File

    Habib, Muhammad Salman in OpenAIRE
    orcid Sarkar, Biswajit;
    Sarkar, Biswajit
    ORCID
    Harvested from ORCID Public Data File

    Sarkar, Biswajit in OpenAIRE
    orcid Tayyab, Muhammad;
    Tayyab, Muhammad
    ORCID
    Harvested from ORCID Public Data File

    Tayyab, Muhammad in OpenAIRE
    orcid Saleem, Muhammad Wajid;
    Saleem, Muhammad Wajid
    ORCID
    Harvested from ORCID Public Data File

    Saleem, Muhammad Wajid in OpenAIRE
    +4 Authors

    The phenomena of global warming have increased the frequency of natural disasters. These disasters generate thousands of tons of waste and cause loss of human lives, environmental damages, and economic losses every year. Currently, disaster response policies are reactive in nature to bring the community back to normal routine. However, increased resilience against future disasters can be achieved by working on long-term planning and setting goals for ecological, economic, and social sustainability in disaster response policies. Keeping in view the importance of the considered issue, this study proposes a large-scale disaster waste management supply chain model, considering economic aspect via total waste processing, environmental aspect by greenhouse gas emissions from disaster waste processing, and social aspect by job opportunities generated during waste processing. To demonstrate the applicability of the proposed supply chain model, numerical experiments are performed on a large-scale case problem. Results show that there is a strong trade-off among the dimensions of sustainability. If decision makers want to achieve higher satisfaction levels against environmental and social objectives, the operational cost of waste management will increase accordingly. Numerical studies obtain the results in accordance with the values of the confidence level of decision makers and coefficient of compensation decided by the managers which also provides the flexibility for the decision makers of developing countries to obtain preferred compromised solution in accordance with their own preferences for the dimensions of sustainability during disaster waste management operation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2019
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    74
    citations74
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2019
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sajjad, Intisar A.;
    Sajjad, Intisar A.
    ORCID
    Harvested from ORCID Public Data File

    Sajjad, Intisar A. in OpenAIRE
    orcid bw MANGANELLI , MATTEO;
    MANGANELLI , MATTEO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    MANGANELLI , MATTEO in OpenAIRE
    orcid MARTIRANO, Luigi;
    MARTIRANO, Luigi
    ORCID
    Harvested from ORCID Public Data File

    MARTIRANO, Luigi in OpenAIRE
    Napoli, Roberto; +2 Authors

    Contrary to expectations, the development of smart (mini) grids is slow. Due to drastic improvements in innovative technologies, the reasons are not strictly technical but the problem mainly lies in regulatory barriers. The current business models are centric to utilities rather than customers. Net metering is a key enabling factor for smart (mini) grids. This paper addresses the economic benefits of net metering for individual residential customers. Energy demand for the individual apartments and common areas is calculated using the daily energy consumption behavior of occupants for typical days of each month of the year. Photovoltaic generation is estimated via PVGIS for a residential building in Italy. The proposed net metering scheme is applied on the aggregate energy demand of selected building without any modification in the current energy billing and net metering tariffs. Results show the noticeable difference in the savings of individual apartments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/eeeic....
    Conference object . 2015 . Peer-reviewed
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sajjad, Intisar A.;
    Sajjad, Intisar A.
    ORCID
    Harvested from ORCID Public Data File

    Sajjad, Intisar A. in OpenAIRE
    orcid bw MANGANELLI , MATTEO;
    MANGANELLI , MATTEO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    MANGANELLI , MATTEO in OpenAIRE
    orcid MARTIRANO, Luigi;
    MARTIRANO, Luigi
    ORCID
    Harvested from ORCID Public Data File

    MARTIRANO, Luigi in OpenAIRE
    Napoli, Roberto; +2 Authors

    Contrary to expectations, the development of smart (mini) grids is slow. Due to drastic improvements in innovative technologies, the reasons are not strictly technical but the problem mainly lies in regulatory barriers. The current business models are centric to utilities rather than customers. Net metering is a key enabling factor for smart (mini) grids. This paper addresses the economic benefits of net metering for individual residential customers. Energy demand for the individual apartments and common areas is calculated using the daily energy consumption behavior of occupants for typical days of each month of the year. Photovoltaic generation is estimated via PVGIS for a residential building in Italy. The proposed net metering scheme is applied on the aggregate energy demand of selected building without any modification in the current energy billing and net metering tariffs. Results show the noticeable difference in the savings of individual apartments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/eeeic....
    Conference object . 2015 . Peer-reviewed
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Irfan, Muhammad; orcid Riaz, M.;
    Riaz, M.
    ORCID
    Harvested from ORCID Public Data File

    Riaz, M. in OpenAIRE
    orcid Arif, M.S.;
    Arif, M.S.
    ORCID
    Harvested from ORCID Public Data File

    Arif, M.S. in OpenAIRE
    Shahzad, S.M.; +4 Authors

    Abstract A long-term energy crisis has resulted in increased combustion of biomass fuel in industrial and household sectors in Pakistan. We report results of a study on the emission characteristics of rice husk, rice straw, corncobs and bagasse since they are frequently used as biomass fuel and differed remarkably in physico-chemical and combustion characteristics. Emission concentrations and emission factors were determined experimentally by burning the biomass fuel using a burning tower. Modified combustion efficiency (MCE) of rice husk, rice straw, corncobs and bagasse was >0.97 indicating that combustion was dominated by flaming mode. Emission factors of gaseous pollutants CO, CO 2 , NO 2 , NO, NO x and SO 2 for rice straw were calculated to be 17.19 ± 0.28, 1090.07 ± 24.0, 0.89 ± 0.03, 1.48 ± 0.04, 3.16 ± 0.08 and 0.38 ± 0.03 g kg −1 respectively which were significantly ( p −1 ), corncobs (8.63 ± 0.12, 595.44 ± 10.38, 0.16 ± 0.01, 0.70 ± 0.01, 1.23 ± 0.02 and 0.02 ± 0.00 g kg −1 ) and bagasse (12.39 ± 0.08, 937.03 ± 9.07, 0.36 ± 0.03, 1.44 ± 0.02, 2.57 ± 0.04 and 0.18 ± 0.02 g kg −1 ). Total emissions of CO, CO 2 , NO 2 , NO, NO x and SO 2 were estimated to be 3.68, 230.51, 0.05, 0.36, 0.60 and 0.03 Gg for rice husk, 33.75, 2140.35, 1.75, 2.91, 6.20 and 0.75 Gg for rice straw, 1.11, 76.28, 0.02, 0.02 and 0.03 Gg for corncobs and 42.12, 3185.53, 1.22, 4.90, 8.74 and 0.61 Gg for bagasse respectively. Rice straw, however, had significantly ( p

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2014
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    73
    citations73
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2014
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Irfan, Muhammad; orcid Riaz, M.;
    Riaz, M.
    ORCID
    Harvested from ORCID Public Data File

    Riaz, M. in OpenAIRE
    orcid Arif, M.S.;
    Arif, M.S.
    ORCID
    Harvested from ORCID Public Data File

    Arif, M.S. in OpenAIRE
    Shahzad, S.M.; +4 Authors

    Abstract A long-term energy crisis has resulted in increased combustion of biomass fuel in industrial and household sectors in Pakistan. We report results of a study on the emission characteristics of rice husk, rice straw, corncobs and bagasse since they are frequently used as biomass fuel and differed remarkably in physico-chemical and combustion characteristics. Emission concentrations and emission factors were determined experimentally by burning the biomass fuel using a burning tower. Modified combustion efficiency (MCE) of rice husk, rice straw, corncobs and bagasse was >0.97 indicating that combustion was dominated by flaming mode. Emission factors of gaseous pollutants CO, CO 2 , NO 2 , NO, NO x and SO 2 for rice straw were calculated to be 17.19 ± 0.28, 1090.07 ± 24.0, 0.89 ± 0.03, 1.48 ± 0.04, 3.16 ± 0.08 and 0.38 ± 0.03 g kg −1 respectively which were significantly ( p −1 ), corncobs (8.63 ± 0.12, 595.44 ± 10.38, 0.16 ± 0.01, 0.70 ± 0.01, 1.23 ± 0.02 and 0.02 ± 0.00 g kg −1 ) and bagasse (12.39 ± 0.08, 937.03 ± 9.07, 0.36 ± 0.03, 1.44 ± 0.02, 2.57 ± 0.04 and 0.18 ± 0.02 g kg −1 ). Total emissions of CO, CO 2 , NO 2 , NO, NO x and SO 2 were estimated to be 3.68, 230.51, 0.05, 0.36, 0.60 and 0.03 Gg for rice husk, 33.75, 2140.35, 1.75, 2.91, 6.20 and 0.75 Gg for rice straw, 1.11, 76.28, 0.02, 0.02 and 0.03 Gg for corncobs and 42.12, 3185.53, 1.22, 4.90, 8.74 and 0.61 Gg for bagasse respectively. Rice straw, however, had significantly ( p

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Radboud Repository
    Article . 2014
    Data sources: Radboud Repository
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    73
    citations73
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Radboud Repositoryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Radboud Repository
      Article . 2014
      Data sources: Radboud Repository
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Muhammad Salman Habib;
    Muhammad Salman Habib
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Salman Habib in OpenAIRE
    orcid Muhammad Omair;
    Muhammad Omair
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Omair in OpenAIRE
    orcid Muhammad Babar Ramzan;
    Muhammad Babar Ramzan
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Babar Ramzan in OpenAIRE
    orcid Tariq Nawaz Chaudhary;
    Tariq Nawaz Chaudhary
    ORCID
    Harvested from ORCID Public Data File

    Tariq Nawaz Chaudhary in OpenAIRE
    +2 Authors

    Increasing energy demand and the fast depletion of fossil fuels have prompted the quest for sustainable energy sources. Biodiesel is a potential fossil fuel replacement that can be used in engines without modification. However, the commercial feasibility of biodiesel production is a major challenge. A resilient and cost-efficient biodiesel supply chain network is essential for commercialization. In addition, disruption risks arising from operational downtime, labor strikes, natural disasters, and uncertainty embedded in the data compromise the effectiveness of tactical and strategic level supply chain planning. In line with these requirements, an animal fat-based biodiesel supply chain model that reduces the total system cost and accounts for both disruption and operational risks is proposed. The proposed model determines the optimal production–distribution quantities and supports facility location and capacity decisions against multiple supply and demand interruption scenarios. A novel interactive solution technique, robust possibilistic flexible programming, which enables decision-makers to incorporate flexibility into model constraints, has been introduced. Furthermore, a p-measure constraint that ensures the lowest cost under disruption scenarios is used to control network reliability. A real-world case study is used to assess the suggested model and solution technique's applicability. The findings demonstrate a tradeoff between system reliability and nominal cost, showing that with a marginal increase in overall cost, the decisions can be secured against an uncertain environment. Biodiesel producers and distributors, as well as investors and regulators, may potentially benefit from the proposed model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2022
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    82
    citations82
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2022
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Muhammad Salman Habib;
    Muhammad Salman Habib
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Salman Habib in OpenAIRE
    orcid Muhammad Omair;
    Muhammad Omair
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Omair in OpenAIRE
    orcid Muhammad Babar Ramzan;
    Muhammad Babar Ramzan
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Babar Ramzan in OpenAIRE
    orcid Tariq Nawaz Chaudhary;
    Tariq Nawaz Chaudhary
    ORCID
    Harvested from ORCID Public Data File

    Tariq Nawaz Chaudhary in OpenAIRE
    +2 Authors

    Increasing energy demand and the fast depletion of fossil fuels have prompted the quest for sustainable energy sources. Biodiesel is a potential fossil fuel replacement that can be used in engines without modification. However, the commercial feasibility of biodiesel production is a major challenge. A resilient and cost-efficient biodiesel supply chain network is essential for commercialization. In addition, disruption risks arising from operational downtime, labor strikes, natural disasters, and uncertainty embedded in the data compromise the effectiveness of tactical and strategic level supply chain planning. In line with these requirements, an animal fat-based biodiesel supply chain model that reduces the total system cost and accounts for both disruption and operational risks is proposed. The proposed model determines the optimal production–distribution quantities and supports facility location and capacity decisions against multiple supply and demand interruption scenarios. A novel interactive solution technique, robust possibilistic flexible programming, which enables decision-makers to incorporate flexibility into model constraints, has been introduced. Furthermore, a p-measure constraint that ensures the lowest cost under disruption scenarios is used to control network reliability. A real-world case study is used to assess the suggested model and solution technique's applicability. The findings demonstrate a tradeoff between system reliability and nominal cost, showing that with a marginal increase in overall cost, the decisions can be secured against an uncertain environment. Biodiesel producers and distributors, as well as investors and regulators, may potentially benefit from the proposed model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2022
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    82
    citations82
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2022
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mehran Ullah;
    Mehran Ullah
    ORCID
    Harvested from ORCID Public Data File

    Mehran Ullah in OpenAIRE
    orcid bw Iqra Asghar;
    Iqra Asghar
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Iqra Asghar in OpenAIRE
    orcid Muhammad Zahid;
    Muhammad Zahid
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Zahid in OpenAIRE
    orcid Muhammad Omair;
    Muhammad Omair
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Omair in OpenAIRE
    +2 Authors

    The closed-loop supply chain management (CLSCM) is an attractive research field for the corporate and academic worlds; however, closing the loop is not a simple task. Reverse logistics activities increase management complexities and uncertainties by establishing multi-fold collection and return management processes. Unlike traditional supply chain management, where managers deal with only stochastic demand, in closed-loop supply chain management, they deal with both stochastic demand and returns, which increases the cumulative uncertainty in the system. Firms usually use disposable packaging, and demand uncertainties also increase the negative environmental implications of logistics activities. This study aims to investigate optimal remanufacturing strategy and reusable packaging capacity under stochastic demand and return rate for single and multi-retailer closed-loop supply chain models. The results show that a hybrid policy is an optimal option for both single and multi-retailer cases; however, the rate of remanufacturing increases for multiple-retailers. Furthermore, remanufacturing cost, manufacturing cost, and ordering cost of retailers are the principal drivers of hybrid supply chain management. The results further suggest that supply chain managers should reduce manufacturing and remanufacturing costs because they play a central role in deciding the optimal remanufacturing rate. Increasing the remanufacturing rate increases ordering quantities and reduces setup and ordering costs in the system. Thus the remanufacturing is a relatively inexpensive policy for supply chains with higher setup and ordering costs. Numerical examples, sensitivity analysis, and comparative study show the robustness and validity of the proposed model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2021
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    151
    citations151
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2021
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mehran Ullah;
    Mehran Ullah
    ORCID
    Harvested from ORCID Public Data File

    Mehran Ullah in OpenAIRE
    orcid bw Iqra Asghar;
    Iqra Asghar
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Iqra Asghar in OpenAIRE
    orcid Muhammad Zahid;
    Muhammad Zahid
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Zahid in OpenAIRE
    orcid Muhammad Omair;
    Muhammad Omair
    ORCID
    Harvested from ORCID Public Data File

    Muhammad Omair in OpenAIRE
    +2 Authors

    The closed-loop supply chain management (CLSCM) is an attractive research field for the corporate and academic worlds; however, closing the loop is not a simple task. Reverse logistics activities increase management complexities and uncertainties by establishing multi-fold collection and return management processes. Unlike traditional supply chain management, where managers deal with only stochastic demand, in closed-loop supply chain management, they deal with both stochastic demand and returns, which increases the cumulative uncertainty in the system. Firms usually use disposable packaging, and demand uncertainties also increase the negative environmental implications of logistics activities. This study aims to investigate optimal remanufacturing strategy and reusable packaging capacity under stochastic demand and return rate for single and multi-retailer closed-loop supply chain models. The results show that a hybrid policy is an optimal option for both single and multi-retailer cases; however, the rate of remanufacturing increases for multiple-retailers. Furthermore, remanufacturing cost, manufacturing cost, and ordering cost of retailers are the principal drivers of hybrid supply chain management. The results further suggest that supply chain managers should reduce manufacturing and remanufacturing costs because they play a central role in deciding the optimal remanufacturing rate. Increasing the remanufacturing rate increases ordering quantities and reduces setup and ordering costs in the system. Thus the remanufacturing is a relatively inexpensive policy for supply chains with higher setup and ordering costs. Numerical examples, sensitivity analysis, and comparative study show the robustness and validity of the proposed model.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2021
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    151
    citations151
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2021
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph