- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- DE
- AT
- PL
- Hyper Article en Ligne
- Energy Research
- 2. Zero hunger
- DE
- AT
- PL
- Hyper Article en Ligne
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, Germany, United Kingdom, France, Spain, France, FinlandPublisher:Springer Science and Business Media LLC Authors:Davide Cammarano;
Davide Cammarano;Davide Cammarano
Davide Cammarano in OpenAIREMatthew P. Reynolds;
Matthew P. Reynolds
Matthew P. Reynolds in OpenAIREFulu Tao;
+56 AuthorsFulu Tao
Fulu Tao in OpenAIREDavide Cammarano;
Davide Cammarano;Davide Cammarano
Davide Cammarano in OpenAIREMatthew P. Reynolds;
Matthew P. Reynolds
Matthew P. Reynolds in OpenAIREFulu Tao;
Curtis D. Jones; Bruce A. Kimball;Fulu Tao
Fulu Tao in OpenAIREMikhail A. Semenov;
Garry O'Leary; Yan Zhu;Mikhail A. Semenov
Mikhail A. Semenov in OpenAIREDavid B. Lobell;
Pramod K. Aggarwal;David B. Lobell
David B. Lobell in OpenAIRESebastian Gayler;
Sebastian Gayler
Sebastian Gayler in OpenAIREBruno Basso;
Bruno Basso
Bruno Basso in OpenAIREJørgen E. Olesen;
Jørgen E. Olesen
Jørgen E. Olesen in OpenAIREPierre Martre;
Pierre Martre;Pierre Martre
Pierre Martre in OpenAIREJordi Doltra;
Jordi Doltra
Jordi Doltra in OpenAIRETaru Palosuo;
Taru Palosuo
Taru Palosuo in OpenAIREDaniel Wallach;
Daniel Wallach
Daniel Wallach in OpenAIREP. V. V. Prasad;
Elias Fereres;P. V. V. Prasad
P. V. V. Prasad in OpenAIREFrank Ewert;
Frank Ewert
Frank Ewert in OpenAIREReimund P. Rötter;
Reimund P. Rötter
Reimund P. Rötter in OpenAIREAndrew J. Challinor;
Andrew J. Challinor; Ann-Kristin Koehler;Andrew J. Challinor
Andrew J. Challinor in OpenAIREPierre Stratonovitch;
Pierre Stratonovitch
Pierre Stratonovitch in OpenAIREThilo Streck;
Thilo Streck
Thilo Streck in OpenAIRERoberto C. Izaurralde;
Roberto C. Izaurralde;Roberto C. Izaurralde
Roberto C. Izaurralde in OpenAIREKurt Christian Kersebaum;
Joost Wolf; Claudio O. Stöckle;Kurt Christian Kersebaum
Kurt Christian Kersebaum in OpenAIREZhigan Zhao;
Zhigan Zhao; Peter J. Thorburn; Iurii Shcherbak; Iwan Supit;Zhigan Zhao
Zhigan Zhao in OpenAIREClaas Nendel;
Christian Biernath;Claas Nendel
Claas Nendel in OpenAIREEckart Priesack;
Enli Wang;Eckart Priesack
Eckart Priesack in OpenAIREChristoph Müller;
Christoph Müller
Christoph Müller in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIREMohamed Jabloun;
Mohamed Jabloun
Mohamed Jabloun in OpenAIREMargarita Garcia-Vila;
L. A. Hunt;Margarita Garcia-Vila
Margarita Garcia-Vila in OpenAIREEhsan Eyshi Rezaei;
S. Naresh Kumar; Jakarat Anothai; Jakarat Anothai;Ehsan Eyshi Rezaei
Ehsan Eyshi Rezaei in OpenAIREKatharina Waha;
Katharina Waha
Katharina Waha in OpenAIREG. De Sanctis;
G. De Sanctis;G. De Sanctis
G. De Sanctis in OpenAIRESenthold Asseng;
Phillip D. Alderman; Jeffrey W. White; Michael J. Ottman; Alex C. Ruane; Gerard W. Wall;Senthold Asseng
Senthold Asseng in OpenAIREdoi: 10.1038/nclimate2470
handle: 10261/158875 , 10568/57488 , 10900/64900
Asseng, S. et al. Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time. We thank the Agricultural Model Intercomparison and Improvement Project and its leaders C. Rosenzweig from NASA Goddard Institute for Space Studies and Columbia University (USA), J. Jones from University of Florida (USA), J. Hatfield from United States Department of Agriculture (USA) and J. Antle from Oregon State University (USA) for support. We also thank M. Lopez from CIMMYT (Turkey), M. Usman Bashir from University of Agriculture, Faisalabad (Pakistan), S. Soufizadeh from Shahid Beheshti University (Iran), and J. Lorgeou and J-C. Deswarte from ARVALIS—Institut du Végétal (France) for assistance with selecting key locations and quantifying regional crop cultivars, anthesis and maturity dates and R. Raymundo for assistance with GIS. S.A. and D.C. received financial support from the International Food Policy Research Institute (IFPRI). C.S. was funded through USDA National Institute for Food and Agriculture award 32011-68002-30191. C.M. received financial support from the KULUNDA project (01LL0905L) and the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (BMBF). F.E. received support from the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of Education and Research (2812ERA115) and E.E.R. was funded through the German Science Foundation (project EW 119/5-1). M.J. and J.E.O. were funded through the FACCE MACSUR project by the Danish Strategic Research Council. K.C.K. and C.N. were funded by the FACCE MACSUR project through the German Federal Ministry of Food and Agriculture (BMEL). F.T., T.P. and R.P.R. received financial support from FACCE MACSUR project funded through the Finnish Ministry of Agriculture and Forestry (MMM); F.T. was also funded through National Natural Science Foundation of China (No. 41071030). C.B. was funded through the Helmholtz project ‘REKLIM—Regional Climate Change: Causes and Effects’ Topic 9: ‘Climate Change and Air Quality’. M.P.R. and P.D.A. received funding from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). G.O’L. was funded through the Australian Grains Research and Development Corporation and the Department of Environment and Primary Industries Victoria, Australia. R.C.I. was funded by Texas AgriLife Research, Texas A&M University. E.W. and Z.Z. were funded by CSIRO and the Chinese Academy of Sciences (CAS) through the research project ‘Advancing crop yield while reducing the use of water and nitrogen’ and by the CSIRO-MoE PhD Research Program. Peer reviewed
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,648 popularity Top 0.01% influence Top 0.1% impulse Top 0.1% Powered by BIP!
visibility 78visibility views 78 download downloads 7,828 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/57488Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEberhard Karls University Tübingen: Publication SystemArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 FrancePublisher:Informa UK Limited Funded by:EC | GREENLANDEC| GREENLANDAuthors:Bert, Valérie;
Neu, Silke; Zdanevitch, Isabelle;Bert, Valérie
Bert, Valérie in OpenAIREFriesl-Hanl, Wolfgang;
+5 AuthorsFriesl-Hanl, Wolfgang
Friesl-Hanl, Wolfgang in OpenAIREBert, Valérie;
Neu, Silke; Zdanevitch, Isabelle;Bert, Valérie
Bert, Valérie in OpenAIREFriesl-Hanl, Wolfgang;
Collet, Serge;Friesl-Hanl, Wolfgang
Friesl-Hanl, Wolfgang in OpenAIREGaucher, Rodolphe;
Gaucher, Rodolphe
Gaucher, Rodolphe in OpenAIREPuschenreiter, Markus;
Muller, Ingo; Kumpiene, Jurate;Puschenreiter, Markus
Puschenreiter, Markus in OpenAIREA questionnaire survey was carried out in four European countries to gather end-user's perceptions of using plants from phytotechnologies in combustion and anaerobic digestion (AD). Nine actors of the wood energy sector from France, Germany, and Sweden, and eleven AD platform operators from France, Germany, and Austria were interviewed. Questions related to installation, input materials, performed analyses, phytostabilization, and phytoextraction were asked. Although the majority of respondents did not know phytotechnologies, results suggested that plant biomass from phytomanaged areas could be used in AD and combustion, under certain conditions. As a potential benefit, phytomanaged plants would not compete with plants grown on agricultural lands, contaminated lands being not suitable for agriculture production. Main limitations would be related to additional controls in process' inputs and end-products and installations that might generate additional costs. In most cases, the price of phytotechnologies biomass was mentioned as a driver to potentially use plants from metal-contaminated soils. Plants used in phytostabilization or phytoexclusion were thought to be less risky and, consequently, benefited from a better theoretical acceptance than those issued from phytoextraction. Results were discussed according to national regulations. One issue was related to the regulatory gap concerning the status of the plant biomass produced on contaminated land.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2017.1303814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15226514.2017.1303814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:EDP Sciences doi: 10.2516/ogst/2010039
The CO2 storage capacity estimated at the regional scale provides a preliminary recognition of as far as the possible uses of CO2 sequestration as an option of emission reduction. There has been presented the estimation of CO2 storage capacity for aquifers of Lower Cretaceous, Lower Jurassic and Lower Triassic of Polish Lowland. The Lower Jurassic deposits exhibit the greatest CO2 storage capacity of all the horizons, storage capacity of the Lower Triassic deposits is lower, the smallest capacity was estimated for the Lower Cretaceous deposits. The use of specific capacity maps for carbon dioxide in aquifers has been suggested in order to estimate the potential on national and basin scale as well as the search for prospective areas for CO2 storage.
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2516/ogst/2010039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2516/ogst/2010039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, United Kingdom, Australia, Portugal, United Kingdom, United Kingdom, AustraliaPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E..., ARC | Testing climatic, physiol..., ARC | Woodland response to elev... +3 projectsNSF| Collaborative Research: Ecoclimate Teleconnections between Amazonia and Temperate North America: Cross-Region Feedbacks among Tree Mortality, Land Use Change, and the Atmosphere ,ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon? ,ARC| Shifting rainfall from spring to autumn: tree growth and water use under climate change ,NSF| COLLABORATIVE RESEARCH: EAGER-NEON: Prototyping Assessment of Ecoclimate Teleconnections Affecting NEON Domains ,NSF| Transformative Behavior of Energy, Water and Carbon in the Critical Zone II: Interactions between Long- and Short-term Processes that Control Delivery of Critical Zone ServicesAuthors:Jordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
+62 AuthorsMelanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIRETimothy J. Brodribb;
Simon M. Landhäusser;Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREMelanie J. B. Zeppel;
Melanie J. B. Zeppel;Melanie J. B. Zeppel
Melanie J. B. Zeppel in OpenAIREWilliam T. Pockman;
Thomas Kolb;William T. Pockman
William T. Pockman in OpenAIREHenrik Hartmann;
Andy Hector; Travis E. Huxman; Alison K. Macalady; Darin J. Law;Henrik Hartmann
Henrik Hartmann in OpenAIREL. Turin Dickman;
Matthew J. Germino;L. Turin Dickman
L. Turin Dickman in OpenAIREDanielle A. Way;
Danielle A. Way; Leander D. L. Anderegg; Robert E. Pangle; John S. Sperry;Danielle A. Way
Danielle A. Way in OpenAIREDavid T. Tissue;
Nate G. McDowell; J. D. Muss;David T. Tissue
David T. Tissue in OpenAIREBrent E. Ewers;
Honglang Duan; Patrick J. Hudson;Brent E. Ewers
Brent E. Ewers in OpenAIREPatrick J. Mitchell;
Patrick J. Mitchell
Patrick J. Mitchell in OpenAIREFrida I. Piper;
Elizabeth A. Pinkard; Lucía Galiano;Frida I. Piper
Frida I. Piper in OpenAIRETrenton E. Franz;
Trenton E. Franz
Trenton E. Franz in OpenAIREUwe G. Hacke;
Joe Quirk; Greg A. Barron-Gafford; Keith Reinhardt; Adam D. Collins; Arthur Gessler; David M. Love; Jeffrey M. Kane; Sanna Sevanto;Uwe G. Hacke
Uwe G. Hacke in OpenAIREHarald Bugmann;
Harald Bugmann
Harald Bugmann in OpenAIREMaurizio Mencuccini;
David D. Breshears; Henry D. Adams;Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRENúria Garcia-Forner;
David A. Galvez;Núria Garcia-Forner
Núria Garcia-Forner in OpenAIREJames D. Lewis;
James D. Lewis
James D. Lewis in OpenAIREDavid J. Beerling;
David J. Beerling
David J. Beerling in OpenAIREMichael O'Brien;
Michael O'Brien
Michael O'Brien in OpenAIREChonggang Xu;
Michael W. Jenkins; Jennifer A. Plaut; Anna Sala; Craig D. Allen; Monica L. Gaylord; Monica L. Gaylord;Chonggang Xu
Chonggang Xu in OpenAIREEnrico A. Yepez;
Enrico A. Yepez
Enrico A. Yepez in OpenAIREMichel Vennetier;
Jean-Marc Limousin; Anthony P. O'Grady; Richard Cobb;Michel Vennetier
Michel Vennetier in OpenAIREFrancesco Ripullone;
William R. L. Anderegg;Francesco Ripullone
Francesco Ripullone in OpenAIRERodrigo Vargas;
Rodrigo Vargas
Rodrigo Vargas in OpenAIRERodrigo Hakamada;
Rodrigo Hakamada
Rodrigo Hakamada in OpenAIREMichael G. Ryan;
Michael G. Ryan;Michael G. Ryan
Michael G. Ryan in OpenAIREWidespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 790 citations 790 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 74visibility views 74 download downloads 2,340 Powered bymore_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2017Full-Text: http://hdl.handle.net/11563/128322Data sources: Bielefeld Academic Search Engine (BASE)Nature Ecology & EvolutionArticle . 2017 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-017-0248-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint , Report 2019 France, Spain, United Kingdom, France, United Kingdom, United Kingdom, Finland, FrancePublisher:American Association for the Advancement of Science (AAAS) Publicly fundedFunded by:NSF | Predicting Regional Invas..., EC | BIOBIO, EC | ECOWORM +13 projectsNSF| Predicting Regional Invasion Dynamic Processes (PRIDE)-Developing a Cross-scale, Functional-trait Based Modeling Framework ,EC| BIOBIO ,EC| ECOWORM ,EC| SPECIALS ,NSERC ,FWF| The macrofauna decomposer food web on alpine pastureland ,EC| TERRESTREVOL ,EC| AGFORWARD ,NWO| EV Diagnostics for monitoring therapy byliquid tuneable Coulter flowcytometry (project 3.2) ,FWF| Litter decomposition and humus formation in highalpine soils ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,EC| Gradual_Change ,FCT| LA 1 ,NSF| IGERT: Ecology, Management and Restoration of Integrated Human/Natural Landscapes ,EC| FUNDIVEUROPE ,AKA| Macrodetritivore range shifts and implications for aboveground-belowground interactionsAuthors: Devin Routh;Aidan M. Keith;
Geoff H. Baker;Aidan M. Keith
Aidan M. Keith in OpenAIREBoris Schröder;
+142 AuthorsBoris Schröder
Boris Schröder in OpenAIREDevin Routh;Aidan M. Keith;
Geoff H. Baker;Aidan M. Keith
Aidan M. Keith in OpenAIREBoris Schröder;
Fredrick O. Ayuke;Boris Schröder
Boris Schröder in OpenAIREIñigo Virto;
Iñigo Virto
Iñigo Virto in OpenAIREThomas W. Crowther;
Thomas W. Crowther
Thomas W. Crowther in OpenAIREAnahí Domínguez;
Yvan Capowiez;Anahí Domínguez
Anahí Domínguez in OpenAIREIrina V. Zenkova;
Irina V. Zenkova
Irina V. Zenkova in OpenAIREKonstantin B. Gongalsky;
Konstantin B. Gongalsky
Konstantin B. Gongalsky in OpenAIREMartin Holmstrup;
Sandy M. Smith;Martin Holmstrup
Martin Holmstrup in OpenAIREMark E. Caulfield;
Mark E. Caulfield
Mark E. Caulfield in OpenAIREChristian Mulder;
Robin Beauséjour;Christian Mulder
Christian Mulder in OpenAIREShishir Paudel;
Shishir Paudel
Shishir Paudel in OpenAIREMatthias C. Rillig;
Matthias C. Rillig
Matthias C. Rillig in OpenAIREMichael Steinwandter;
Michiel Rutgers; Takuo Hishi;Michael Steinwandter
Michael Steinwandter in OpenAIRELoes van Schaik;
Jérôme Mathieu;Loes van Schaik
Loes van Schaik in OpenAIREGuillaume Xavier Rousseau;
José Antonio Talavera;Guillaume Xavier Rousseau
Guillaume Xavier Rousseau in OpenAIREMiguel Á. Rodríguez;
Miguel Á. Rodríguez
Miguel Á. Rodríguez in OpenAIRENico Eisenhauer;
Nico Eisenhauer
Nico Eisenhauer in OpenAIRECarlos Fragoso;
H. Lalthanzara; Thibaud Decaëns; Luis M. Hernández;Carlos Fragoso
Carlos Fragoso in OpenAIREAdrian A. Wackett;
David J. Russell;Adrian A. Wackett
Adrian A. Wackett in OpenAIREWeixin Zhang;
Weixin Zhang
Weixin Zhang in OpenAIREDavid A. Wardle;
David A. Wardle
David A. Wardle in OpenAIREScott R. Loss;
Scott R. Loss
Scott R. Loss in OpenAIRESteven J. Fonte;
Steven J. Fonte
Steven J. Fonte in OpenAIRELiliana B. Falco;
Liliana B. Falco
Liliana B. Falco in OpenAIREOlaf Schmidt;
Olaf Schmidt
Olaf Schmidt in OpenAIRERadim Matula;
Radim Matula
Radim Matula in OpenAIREShaieste Gholami;
Darío J. Díaz Cosín; Anna Rożen; Robert L. Bradley;Shaieste Gholami
Shaieste Gholami in OpenAIREWim H. van der Putten;
Michael J. Gundale; Andrea Dávalos; Andrea Dávalos; Rosa Fernández;Wim H. van der Putten
Wim H. van der Putten in OpenAIREJohan van den Hoogen;
Johan van den Hoogen
Johan van den Hoogen in OpenAIREFranciska T. de Vries;
Victoria Nuzzo; Mujeeb Rahman P;Franciska T. de Vries
Franciska T. de Vries in OpenAIREAndré L.C. Franco;
André L.C. Franco
André L.C. Franco in OpenAIREJan Hendrik Moos;
Jan Hendrik Moos
Jan Hendrik Moos in OpenAIREJoann K. Whalen;
Martine Fugère;Joann K. Whalen
Joann K. Whalen in OpenAIREMac A. Callaham;
Mac A. Callaham
Mac A. Callaham in OpenAIREMiwa Arai;
Miwa Arai
Miwa Arai in OpenAIREElizabeth M. Bach;
Yiqing Li; Raphaël Marichal; Jonatan Klaminder; Monika Joschko; George G. Brown;Elizabeth M. Bach
Elizabeth M. Bach in OpenAIREMichael B. Wironen;
Dolores Trigo; Nathaniel H. Wehr;Michael B. Wironen
Michael B. Wironen in OpenAIREMaria Kernecker;
Kristine N. Hopfensperger; Amy Choi;Maria Kernecker
Maria Kernecker in OpenAIREEsperanza Huerta Lwanga;
Sanna T. Kukkonen;Esperanza Huerta Lwanga
Esperanza Huerta Lwanga in OpenAIREBasil V. Iannone;
Veikko Huhta; Birgitta König-Ries; Guénola Pérès;Basil V. Iannone
Basil V. Iannone in OpenAIRESalvador Rebollo;
Olga Ferlian;Salvador Rebollo
Salvador Rebollo in OpenAIRENick van Eekeren;
Anne W. de Valença; Eric Blanchart;Nick van Eekeren
Nick van Eekeren in OpenAIREMatthew W. Warren;
Matthew W. Warren
Matthew W. Warren in OpenAIREJohan Pansu;
Christoph Emmerling;Johan Pansu
Johan Pansu in OpenAIRECourtland Kelly;
Courtland Kelly
Courtland Kelly in OpenAIREJavier Rodeiro-Iglesias;
Javier Rodeiro-Iglesias
Javier Rodeiro-Iglesias in OpenAIREArmand W. Koné;
Armand W. Koné
Armand W. Koné in OpenAIREMuhammad Rashid;
Muhammad Rashid; Alexander M. Roth;Muhammad Rashid
Muhammad Rashid in OpenAIREDavorka K. Hackenberger;
Michael Schirrmann;Davorka K. Hackenberger
Davorka K. Hackenberger in OpenAIREAlberto Orgiazzi;
Bryant C. Scharenbroch;Alberto Orgiazzi
Alberto Orgiazzi in OpenAIREUlrich Brose;
Ulrich Brose
Ulrich Brose in OpenAIREHelen Phillips;
Diana H. Wall; Noa Kekuewa Lincoln; Andrew R. Holdsworth; Raúl Piñeiro; Tunsisa T. Hurisso; Tunsisa T. Hurisso;Helen Phillips
Helen Phillips in OpenAIREMónica Gutiérrez López;
Mónica Gutiérrez López
Mónica Gutiérrez López in OpenAIREKlaus Birkhofer;
Yahya Kooch; Michel Loreau;Klaus Birkhofer
Klaus Birkhofer in OpenAIREJulia Seeber;
Jaswinder Singh; Volkmar Wolters;Julia Seeber
Julia Seeber in OpenAIRERadoslava Kanianska;
Jiro Tsukamoto; Visa Nuutinen;Radoslava Kanianska
Radoslava Kanianska in OpenAIREGerardo Moreno;
Gerardo Moreno
Gerardo Moreno in OpenAIREMarie Luise Carolina Bartz;
Juan B. Jesús Lidón;Marie Luise Carolina Bartz
Marie Luise Carolina Bartz in OpenAIREDaniel R. Lammel;
Daniel R. Lammel;Daniel R. Lammel
Daniel R. Lammel in OpenAIREMadhav P. Thakur;
Madhav P. Thakur
Madhav P. Thakur in OpenAIREFelicity Crotty;
Julia Krebs;Felicity Crotty
Felicity Crotty in OpenAIREIurii M. Lebedev;
Steven J. Vanek;Iurii M. Lebedev
Iurii M. Lebedev in OpenAIREMarta Novo;
Marta Novo
Marta Novo in OpenAIRECarlos A. Guerra;
José Camilo Bedano; Bernd Blossey;Carlos A. Guerra
Carlos A. Guerra in OpenAIRELorenzo Pérez-Camacho;
Lorenzo Pérez-Camacho
Lorenzo Pérez-Camacho in OpenAIREJoanne M. Bennett;
Joanne M. Bennett
Joanne M. Bennett in OpenAIRENobuhiro Kaneko;
Nobuhiro Kaneko
Nobuhiro Kaneko in OpenAIREMadalina Iordache;
Madalina Iordache
Madalina Iordache in OpenAIREAndrés Esteban Duhour;
Maria J. I. Briones; Abegail T Fusilero; Maxim Shashkov; Maxim Shashkov;Andrés Esteban Duhour
Andrés Esteban Duhour in OpenAIREEhsan Sayad;
Ehsan Sayad
Ehsan Sayad in OpenAIREThomas Bolger;
Alejandro Morón-Ríos; Lindsey Norgrove; Benjamin Schwarz;Thomas Bolger
Thomas Bolger in OpenAIREBart Muys;
Bart Muys
Bart Muys in OpenAIREJohan Neirynck;
Johan Neirynck
Johan Neirynck in OpenAIREJean-François Ponge;
Erin K. Cameron; Kelly S. Ramirez;Jean-François Ponge
Jean-François Ponge in OpenAIREpmid: 31649197
pmc: PMC7335308
Earthworm distribution in global soils Earthworms are key components of soil ecological communities, performing vital functions in decomposition and nutrient cycling through ecosystems. Using data from more than 7000 sites, Phillips et al. developed global maps of the distribution of earthworm diversity, abundance, and biomass (see the Perspective by Fierer). The patterns differ from those typically found in aboveground taxa; there are peaks of diversity and abundance in the mid-latitude regions and peaks of biomass in the tropics. Climate variables strongly influence these patterns, and changes are likely to have cascading effects on other soil organisms and wider ecosystem functions. Science , this issue p. 480 ; see also p. 425
Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 286 citations 286 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 53visibility views 53 download downloads 424 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LignePreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationPreprint . 2019License: CC BYFull-Text: https://hal.inrae.fr/hal-02788558/documentCIRAD: HAL (Agricultural Research for Development)Article . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUReport . 2019Full-Text: https://hal.inrae.fr/hal-02788558Data sources: Bielefeld Academic Search Engine (BASE)Royal Agricultural University Repository (RAU Cirencester - CREST)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019License: PDMFull-Text: https://hal.science/hal-02337185Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTANatural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax4851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Australia, FrancePublisher:American Association for the Advancement of Science (AAAS) Authors: Neumann, K; Eggert, M. K. H.; Oslisly, R.;Clist, B;
+10 AuthorsClist, B
Clist, B in OpenAIRENeumann, K; Eggert, M. K. H.; Oslisly, R.;Clist, B;
Denham, Timothy; de Maretj, Pierre;Clist, B
Clist, B in OpenAIREOzainne, S;
Hildebrand, E; Bostoen, K;Ozainne, S
Ozainne, S in OpenAIRESalzmann, U;
Schwartz, D; Eichhorn, B; Tchiengue, B; Hohn, A.;Salzmann, U
Salzmann, U in OpenAIREpmc: PMC3556809
handle: 1885/75108
Bayon et al . (Reports, 9 March 2012, p. 1219) claim that the “rainforest crisis” in Central Africa centered around 2500 years before the present “was not triggered by natural climatic factors” and that it was caused by widespread deforestation resulting from the arrival of the Bantu colonists. However, there is a consensus among palaeoecologists that this landscape change and the related physical erosion it caused was due mainly to a shift to more seasonal rainfall regime.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/75108Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1221820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/75108Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverInstitut national des sciences de l'Univers: HAL-INSUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1221820&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Oxford University Press (OUP) Funded by:NSERCNSERCAuthors:Gregory A Gambetta;
Gregory A Gambetta
Gregory A Gambetta in OpenAIREJose Carlos Herrera;
Silvina Dayer; Quishuo Feng; +2 AuthorsJose Carlos Herrera
Jose Carlos Herrera in OpenAIREGregory A Gambetta;
Gregory A Gambetta
Gregory A Gambetta in OpenAIREJose Carlos Herrera;
Silvina Dayer; Quishuo Feng; Uri Hochberg;Jose Carlos Herrera
Jose Carlos Herrera in OpenAIRESimone D Castellarin;
Simone D Castellarin
Simone D Castellarin in OpenAIREAbstractWater availability is arguably the most important environmental factor limiting crop growth and productivity. Erratic precipitation patterns and increased temperatures resulting from climate change will likely make drought events more frequent in many regions, increasing the demand on freshwater resources and creating major challenges for agriculture. Addressing these challenges through increased irrigation is not always a sustainable solution so there is a growing need to identify and/or breed drought-tolerant crop varieties in order to maintain sustainability in the context of climate change. Grapevine (Vitis vinifera), a major fruit crop of economic importance, has emerged as a model perennial fruit crop for the study of drought tolerance. This review synthesizes the most recent results on grapevine drought responses, the impact of water deficit on fruit yield and composition, and the identification of drought-tolerant varieties. Given the existing gaps in our knowledge of the mechanisms underlying grapevine drought responses, we aim to answer the following question: how can we move towards a more integrative definition of grapevine drought tolerance?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/eraa245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 221 citations 221 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 33visibility views 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jxb/eraa245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, United KingdomPublisher:Environmental Health Perspectives Funded by:EC | ATOPICAEC| ATOPICAAuthors:Lake, Iain R.;
Lake, Iain R.
Lake, Iain R. in OpenAIREJones, Natalia R.;
Agnew, Maureen;Jones, Natalia R.
Jones, Natalia R. in OpenAIREGoodess, Clare M.;
+7 AuthorsGoodess, Clare M.
Goodess, Clare M. in OpenAIRELake, Iain R.;
Lake, Iain R.
Lake, Iain R. in OpenAIREJones, Natalia R.;
Agnew, Maureen;Jones, Natalia R.
Jones, Natalia R. in OpenAIREGoodess, Clare M.;
Giorgi, Filippo; Hamaoui-Laguel, Lynda;Goodess, Clare M.
Goodess, Clare M. in OpenAIRESemenov, Mikhail A.;
Solomon, Fabien;Semenov, Mikhail A.
Semenov, Mikhail A. in OpenAIREStorkey, Jonathan;
Vautard, Robert;Storkey, Jonathan
Storkey, Jonathan in OpenAIREEpstein, Michelle M.;
Epstein, Michelle M.
Epstein, Michelle M. in OpenAIREGlobally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans.We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed (Ambrosia artemisiifolia) in Europe.A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios.Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results.Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385-391; http://dx.doi.org/10.1289/EHP173.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://ineris.hal.science/ineris-01863197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1289/ehp173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 95 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://ineris.hal.science/ineris-01863197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1289/ehp173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Australia, France, Australia, Switzerland, DenmarkPublisher:Wiley Funded by:NSF | Dimensions: Collaborative..., EC | NICHNSF| Dimensions: Collaborative: The climate cascade: functional and evolutionary consequences of climatic change on species, trait, and genetic diversity in a temperate ant community ,EC| NICHAuthors:Loïc Chalmandrier;
Loïc Chalmandrier
Loïc Chalmandrier in OpenAIREJonathan Lenoir;
Jonathan Lenoir
Jonathan Lenoir in OpenAIREMartin A. Nuñez;
Martin A. Nuñez
Martin A. Nuñez in OpenAIRETreena I. Burgess;
+14 AuthorsTreena I. Burgess
Treena I. Burgess in OpenAIRELoïc Chalmandrier;
Loïc Chalmandrier
Loïc Chalmandrier in OpenAIREJonathan Lenoir;
Jonathan Lenoir
Jonathan Lenoir in OpenAIREMartin A. Nuñez;
Martin A. Nuñez
Martin A. Nuñez in OpenAIRETreena I. Burgess;
James Alexander; James Alexander;Treena I. Burgess
Treena I. Burgess in OpenAIRESylvia Haider;
Sylvia Haider
Sylvia Haider in OpenAIRELisa J. Rew;
Lisa J. Rew
Lisa J. Rew in OpenAIREAnn Milbau;
Loïc Pellissier;Ann Milbau
Ann Milbau in OpenAIRENathan J. Sanders;
Nathan J. Sanders; Nathan J. Sanders;Nathan J. Sanders
Nathan J. Sanders in OpenAIREFranz Essl;
Franz Essl
Franz Essl in OpenAIREWolfgang Rabitsch;
Wolfgang Rabitsch
Wolfgang Rabitsch in OpenAIREAníbal Pauchard;
Aníbal Pauchard
Aníbal Pauchard in OpenAIREChristoph Kueffer;
Keith L. McDougall;Christoph Kueffer
Christoph Kueffer in OpenAIREAbstractRapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.
Global Change Biolog... arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 302 citations 302 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 1 Powered bymore_vert Global Change Biolog... arrow_drop_down University of Copenhagen: ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Netherlands, France, France, Germany, FinlandPublisher:Wageningen University and Research Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.;Palosuo, T.;
Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.;Palosuo, T.
Palosuo, T. in OpenAIREWaha, K.;
Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.;Waha, K.
Waha, K. in OpenAIREhandle: 10568/76572
The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario. Data access via DOI 10.17026/DANS-ZB6-6FVQ.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76572Data sources: Bielefeld Academic Search Engine (BASE)Open Data Journal for Agricultural ResearchArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18174/odjar.v1i1.14746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76572Data sources: Bielefeld Academic Search Engine (BASE)Open Data Journal for Agricultural ResearchArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2015License: CC BYData sources: Wageningen Staff PublicationsPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.18174/odjar.v1i1.14746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu