Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4,032 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • EU
  • AT
  • PL
  • English

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pari L; Alfano V; Suardi A; Bergonzoli S; +6 Authors

    This work has been developed under the AGROinLOG Project, “Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe”. An Integrated Biomass Logistics Center (IBLC), is based on the introduction of new production chains into existing agro-industries by using new biomass feedstock. The AGROinLOG Project has dedicated great attention to investigate the potential of cereal chaff as a valuable resource.Chaff is the fine fraction of the thrashing residues, not usually collected. Chaff is made up of glumes, seed husks, rachis and the tinner part of the cereal stems, whole and cracked kernels, as well as weed seeds.Currently there are several mechanical solutions available on the market for chaff recovery, and others are still at prototype stage, but theyare not so common and very often unknown to the farmers.So far, the literature reportsfew cases of chaff collection with the specific purpose of weed seeds removal, but it still lacks specificexperiments on these machinesintentionally used for biomass collection.For this reason, during the Project AGROinLOG a series of large field tests were performed using an independent scientific approach with different kind of chaff harvesting technologiesin France, Sweden and Italy from 2017 to 2019.The present study collects the results of these activities with the aim to fill that gap and provide deeper understanding in the possibility to enhance the current cereal harvesting method, in order to improve the quantity of biomass collected by including the chaff. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 62-68

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pari L; Alfano V; Suardi A; Bergonzoli S; +6 Authors

    This work has been developed under the AGROinLOG Project, “Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe”. An Integrated Biomass Logistics Center (IBLC), is based on the introduction of new production chains into existing agro-industries by using new biomass feedstock. The AGROinLOG Project has dedicated great attention to investigate the potential of cereal chaff as a valuable resource.Chaff is the fine fraction of the thrashing residues, not usually collected. Chaff is made up of glumes, seed husks, rachis and the tinner part of the cereal stems, whole and cracked kernels, as well as weed seeds.Currently there are several mechanical solutions available on the market for chaff recovery, and others are still at prototype stage, but theyare not so common and very often unknown to the farmers.So far, the literature reportsfew cases of chaff collection with the specific purpose of weed seeds removal, but it still lacks specificexperiments on these machinesintentionally used for biomass collection.For this reason, during the Project AGROinLOG a series of large field tests were performed using an independent scientific approach with different kind of chaff harvesting technologiesin France, Sweden and Italy from 2017 to 2019.The present study collects the results of these activities with the aim to fill that gap and provide deeper understanding in the possibility to enhance the current cereal harvesting method, in order to improve the quantity of biomass collected by including the chaff. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 62-68

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andreas Androutsopoulos; Maria Bololia; Elpida Polychroni;

    The EU has set clear targets regarding energy conservation of buildings and heavily supports activities towards achieving these targets on a European scale. The Green Deal, renovation wave, Energy Performance of Buildings Directive (EPBD) and Energy Efficiency Directive (EED) are some examples of EU's actions. For more than a decade, Energy Performance Certificates provide detailed data about the current energy needs of a building/building unit as well as information about the building construction and systems. A Building Renovation Passport (BRP) has, on a European level lately, been conceived as a tool that can stimulate cost-effective renovation in the form of a long-term basis, step-by-step deep renovation roadmap following defined quality criteria, and outline energy renovation measures that will improve the energy performance of the building. A Digital Building Logbook (DBL) is another tool that can serve as an archive where all building information can be stored and continuously updated. In this way, a full record of the building history will be electronically available with data regarding construction plans and permits, maintenance and system replacement activities, energy and heat consumption and production, etc. Building Renovation Passports and the Digital Building Logbook are tools that can help in achieving energy efficiency in existing buildings and contribute to reaching the EU renovation wave goals. The objective of this report is to investigate how the current EPC schemes best make the link towards the BRP and the DBL to further incentivise and stimulate cost-effective deep energy renovations of buildings across Europe. Three surveys were carried out to collect relevant information about the current status of the EPC data records and to identify stakeholders' potential needs, perceptions, thoughts and expectations, regarding a future connection between the EPC and the BRP or DBL. These surveys were prepared in two forms: using an excel file format circulated via email, and through an online questionnaire. Their completion was carried out by 16 countries. Regarding the EPCs, the state or regional energy agencies are the owner of the EPC data records and make full use of them. Their current main usage is for statistical reasons in the majority of the countries and their access is publicly available in half of the responding countries. Many common data is stored in the EPC database which can be linked with other tools (half of the EPC databases are already linked with another source). Regarding the BRP, a review of existing European schemes showed that successful BRPs have combined the renovation advice with financial support, legal requirements and/or communication campaigns. An important factor of the BRP is that it should be issued by a qualified expert and should provide customised measures for the specific building together with the investment costs per renovation measure(s). The DBL analysis showed that it should provide access to building information and contribute to better decision-making for future interventions as well as operation, use and maintenance records. The building owner/user is proposed to have full access to the logbook and provide/input about energy bills and building plans/construction materials info. An important aspect is that every time the building undergoes intervention works, the DBL should be updated accordingly. The most important barrier is the lack of motivation to update the DBL contents followed by the absence of synergies and consistency with other tools. Another interesting finding is that both BRP and DBL should be fed automatically by EPC data without any user interference. There is a clear possible interconnection between EPC data and BRP and DBL future contents. In addition, BRP can be an instrument to increase the renovation rates and DBLs are necessary for the management of buildings' information. The linkage of EPC data and BRP and DBL can be strengthened by introducing BRP and DBL as voluntary schemes under national incentives and should be fully implemented once they have demonstrated acceptance by the stakeholders.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andreas Androutsopoulos; Maria Bololia; Elpida Polychroni;

    The EU has set clear targets regarding energy conservation of buildings and heavily supports activities towards achieving these targets on a European scale. The Green Deal, renovation wave, Energy Performance of Buildings Directive (EPBD) and Energy Efficiency Directive (EED) are some examples of EU's actions. For more than a decade, Energy Performance Certificates provide detailed data about the current energy needs of a building/building unit as well as information about the building construction and systems. A Building Renovation Passport (BRP) has, on a European level lately, been conceived as a tool that can stimulate cost-effective renovation in the form of a long-term basis, step-by-step deep renovation roadmap following defined quality criteria, and outline energy renovation measures that will improve the energy performance of the building. A Digital Building Logbook (DBL) is another tool that can serve as an archive where all building information can be stored and continuously updated. In this way, a full record of the building history will be electronically available with data regarding construction plans and permits, maintenance and system replacement activities, energy and heat consumption and production, etc. Building Renovation Passports and the Digital Building Logbook are tools that can help in achieving energy efficiency in existing buildings and contribute to reaching the EU renovation wave goals. The objective of this report is to investigate how the current EPC schemes best make the link towards the BRP and the DBL to further incentivise and stimulate cost-effective deep energy renovations of buildings across Europe. Three surveys were carried out to collect relevant information about the current status of the EPC data records and to identify stakeholders' potential needs, perceptions, thoughts and expectations, regarding a future connection between the EPC and the BRP or DBL. These surveys were prepared in two forms: using an excel file format circulated via email, and through an online questionnaire. Their completion was carried out by 16 countries. Regarding the EPCs, the state or regional energy agencies are the owner of the EPC data records and make full use of them. Their current main usage is for statistical reasons in the majority of the countries and their access is publicly available in half of the responding countries. Many common data is stored in the EPC database which can be linked with other tools (half of the EPC databases are already linked with another source). Regarding the BRP, a review of existing European schemes showed that successful BRPs have combined the renovation advice with financial support, legal requirements and/or communication campaigns. An important factor of the BRP is that it should be issued by a qualified expert and should provide customised measures for the specific building together with the investment costs per renovation measure(s). The DBL analysis showed that it should provide access to building information and contribute to better decision-making for future interventions as well as operation, use and maintenance records. The building owner/user is proposed to have full access to the logbook and provide/input about energy bills and building plans/construction materials info. An important aspect is that every time the building undergoes intervention works, the DBL should be updated accordingly. The most important barrier is the lack of motivation to update the DBL contents followed by the absence of synergies and consistency with other tools. Another interesting finding is that both BRP and DBL should be fed automatically by EPC data without any user interference. There is a clear possible interconnection between EPC data and BRP and DBL future contents. In addition, BRP can be an instrument to increase the renovation rates and DBLs are necessary for the management of buildings' information. The linkage of EPC data and BRP and DBL can be strengthened by introducing BRP and DBL as voluntary schemes under national incentives and should be fully implemented once they have demonstrated acceptance by the stakeholders.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pölzler, Thomas; Ortner, Florian; Meyer, Lukas H.; Sass, Oliver; +1 Authors

    Climate change increases the frequency and intensity of certain kinds of natural hazard events in alpine areas. This interdisciplinary study addresses the hypothetical possibility of relocating the residents of three alpine areas in Austria: the Sölk valleys, the Johnsbach valley, and the St. Lorenzen/Schwarzenbach valleys. Our particular focus is on these residents’ expectations about such relocations. We find that (1) many residents expect that in the next decades the state will provide them with a level of natural hazards protection, aid, and relief that allows them to continue to live in these valleys; (2) this expectation receives some legal protection but only when it is associated with fundamental rights; and (3) the expectation is morally significant, i.e., it ought to be considered in assessing the moral rightness or justness of relocation policies. These results suggest legal changes and likely extend to many other (Austrian) alpine areas as well. Fonds zur Förderung der Wissenschaftlichen Forschung W 1256-G15 Version of record

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    uni≡pub (unipub)
    Article . 2022
    Data sources: uni≡pub (unipub)
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      uni≡pub (unipub)
      Article . 2022
      Data sources: uni≡pub (unipub)
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pölzler, Thomas; Ortner, Florian; Meyer, Lukas H.; Sass, Oliver; +1 Authors

    Climate change increases the frequency and intensity of certain kinds of natural hazard events in alpine areas. This interdisciplinary study addresses the hypothetical possibility of relocating the residents of three alpine areas in Austria: the Sölk valleys, the Johnsbach valley, and the St. Lorenzen/Schwarzenbach valleys. Our particular focus is on these residents’ expectations about such relocations. We find that (1) many residents expect that in the next decades the state will provide them with a level of natural hazards protection, aid, and relief that allows them to continue to live in these valleys; (2) this expectation receives some legal protection but only when it is associated with fundamental rights; and (3) the expectation is morally significant, i.e., it ought to be considered in assessing the moral rightness or justness of relocation policies. These results suggest legal changes and likely extend to many other (Austrian) alpine areas as well. Fonds zur Förderung der Wissenschaftlichen Forschung W 1256-G15 Version of record

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    uni≡pub (unipub)
    Article . 2022
    Data sources: uni≡pub (unipub)
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      uni≡pub (unipub)
      Article . 2022
      Data sources: uni≡pub (unipub)
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eleonora Foschi; Selena Aureli; Angelo Paletta;

    Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eleonora Foschi; Selena Aureli; Angelo Paletta;

    Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Martetschläger, Lukas;

    Most plastic products in circulation worldwide are based on fossil petroleum and are not biodegradable,which is known to be one of the biggest burdens and threats to the environment. One possible solution to this problem could be the use of bio-based and biodegradable polyhydroxybutyrate (PHB). Undernitrogen and phosphate depletion, Synechocystis sp. PCC 6714 produces PHB. As a positive side-effect,this method also binds the greenhouse gas CO2 through photosynthesis.This thesis analyses the results of a series of experiments carried out as part of basic research to better understand a possible PHB production process. The main goal was to investigate the effects of different lactose concentrations between 1 and 10 g/L from concentrated whey on the microorganism,particularly on the PHB production. The following three main results were obtained:Firstly, the cyanobacterium strain used could not metabolise lactose and even showed lower growth andPHB content of 2.2% at 1 g/L lactose compared to 4.2% without the addition of whey in the shake flaskexperiment. When upscaling in a photobioreactor, the same ratios were observed between cultivationswith and without whey, with the PHB content doubling to 6.5 and 10.5% (volumetric productivity 7.7and 21.1 mg/L/day).Secondly, the standard hydrolysation method for PHB quantification with concentrated sulfuric acid was compared with the alkaline sodium hydroxide method using a multivariate data analysis.Subsequently, the more promising acidic method was further optimised to reduce viscosity of sulfuricacid, gaining an optimum at 160 min, 14 M H2SO4, 100°C.Thirdly, as an alternative to the state of the art methods for recovering PHB, which use, e.g. the harmful chloroform, three ionic liquids based on the cation 1-Ethyl-3-methylimidazolium with three differentanions Dimethylphosphate, Acetate or Chloride were tested to dissolve the biomass but not thebiopolymer. 1-Ethyl-3-methylimidazolium Dimethylphosphate completely dissolved the biomass at75°C after 1 h and did not decompose or dissolve the PHB so that it could be implemented in a complete recovery process.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Martetschläger, Lukas;

    Most plastic products in circulation worldwide are based on fossil petroleum and are not biodegradable,which is known to be one of the biggest burdens and threats to the environment. One possible solution to this problem could be the use of bio-based and biodegradable polyhydroxybutyrate (PHB). Undernitrogen and phosphate depletion, Synechocystis sp. PCC 6714 produces PHB. As a positive side-effect,this method also binds the greenhouse gas CO2 through photosynthesis.This thesis analyses the results of a series of experiments carried out as part of basic research to better understand a possible PHB production process. The main goal was to investigate the effects of different lactose concentrations between 1 and 10 g/L from concentrated whey on the microorganism,particularly on the PHB production. The following three main results were obtained:Firstly, the cyanobacterium strain used could not metabolise lactose and even showed lower growth andPHB content of 2.2% at 1 g/L lactose compared to 4.2% without the addition of whey in the shake flaskexperiment. When upscaling in a photobioreactor, the same ratios were observed between cultivationswith and without whey, with the PHB content doubling to 6.5 and 10.5% (volumetric productivity 7.7and 21.1 mg/L/day).Secondly, the standard hydrolysation method for PHB quantification with concentrated sulfuric acid was compared with the alkaline sodium hydroxide method using a multivariate data analysis.Subsequently, the more promising acidic method was further optimised to reduce viscosity of sulfuricacid, gaining an optimum at 160 min, 14 M H2SO4, 100°C.Thirdly, as an alternative to the state of the art methods for recovering PHB, which use, e.g. the harmful chloroform, three ionic liquids based on the cation 1-Ethyl-3-methylimidazolium with three differentanions Dimethylphosphate, Acetate or Chloride were tested to dissolve the biomass but not thebiopolymer. 1-Ethyl-3-methylimidazolium Dimethylphosphate completely dissolved the biomass at75°C after 1 h and did not decompose or dissolve the PHB so that it could be implemented in a complete recovery process.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Han, Fei;

    Das Passivhaus Institut hat eine große Anzahl genutzter Passivhäuser in Europa messtechnisch ausgewertet und konnte nachweisen, dass der Heizwärmebedarf neu gebauter Passivhäuser im Bereich von 15 kWh/m2a liegt, was nur 10-20% des Heizwärmebedarfs des Green Building oder anderer Energiesparstandards für Gebäude in China entspricht. Mit dem Passivhaus können den Heizwärmebedarf und die CO2-Emissionen in China erheblich gesenkt werden, was für die chinesische Regierung und Gesellschaft von großer Bedeutung ist. Folglich hat China im Zeitraum 2016-2020 mehr als 10 Millionen Quadratmeter Niedrigstenergiegebäude (Passivhäuser) gebaut und wird bis 2025 weitere 50 Millionen Quadratmeter errichten. Daher ist die Hauptmotivation dieser Arbeit, den Energieverbrauch von Passivhäusern in China zu untersuchen. Ziel ist, die Anwendbarkeit der Passivhausstandards unter Berücksichtigung der chinesischen Nutzergewohnheiten und klimatischen Besonderheiten zu validieren und ergänzende Vorschläge für die Anwendung zu unterbreiten. Für diese Arbeit wurden ein Passivhaus-Wohngebäude, ein Passivhaus-Bürogebäude und ein Green Building im Deutsch-Chinesischen Ökopark Qingdao, Nordchina, als Gegenstand der Untersuchung ausgewählt. Die angewandte Forschungsmethode gliedert sich im Wesentlichen in vier Schritte: a) Einrichtung eines Energieverbrauchsüberwachungssystems, um Energieverbrauchsdaten zu erhalten. b) Passivhaus-Planungspaket (PHPP), Therm und IBE sind Simulationswerkzeuge, die in dieser Arbeit zur Bewertung des Gebäudeenergieverbrauchs und der Wärmebrücken verwendet werden. c) Vergleich der Energieverbrauchsdaten des Passivhausgebäudes mit den simulierten oder entworfenen Energieverbrauchsdaten und schließlich d) Ermittlung der Unterschiede zwischen den beiden Datensätzen durch Analyse der Ursachen, um die Energieeffizienz des Gebäudes zu optimieren und aufzuwerten. Für die Studie wurden zunächst 3-jährige Betriebsdaten des 2016 errichteten Passivhauses-Bürogebäude ausgewertet. Das Gebäudesystem wurde gemäß den Daten des hohen Energieverbrauchs im Jahr 2017 in Betrieb genommen. Danach waren die Energieverbrauchsdaten in den folgenden zwei Jahren deutlich niedriger. Dies zeigt, wie wichtig die Inbetriebnahme der HVAC-Anlage für große öffentliche Passivhausgebäude ist. Die Analyse der Energieverbrauchsdaten und der innere Komfort-Parameter für die folgenden zwei Jahre ergab, dass der Heizwärmebedarf größer war als der simulierte Wert und der Kühlbedarf gut mit dem simulierten Wert übereinstimmte. Der innere Komfort des Gebäudes wurde das ganze Jahr über innerhalb des festgelegten Komfortbereichs gehalten. Zweitens wurde ein Passivhaus-Wohngebäude mit 36 Wohneinheiten, das im Jahr 2020 fertiggestellt wurde, messtechnisch begleitet. Erstmalig wurde ein Passivhaus-Wohngebäude in China messtechnisch ausgewertet. Während des Überwachungszeitraums ergab ein umfassender Vergleich der Entwurfs- und Konstruktionstechniken zwischen dem Passivhaus-Wohngebäude und einem benachbarten als Green Building gebauten Wohngebäude, dass im Passivhaus-Wohngebäude der Heizwärmebedarf im Vergleich zu dem Green Building Wohngebäude erheblich reduziert wurde, und es wurde vorgeschlagen, dass eine groß angelegte Förderung von Passivhäusern ein vorteilhafter Weg wäre, um Chinas Dual-Carbon-Ziele zu erreichen. Nach Abschluss der Überwachung zeigte die Analyse, dass der tatsächliche Heizwärmebedarf höher war als der vorhergesagte Wert, und dass der Primärenergieverbrauch und der innere Komfort den Passivhausstandards entsprachen. Die Gründe für den höheren Heizwärmebedarf sind 1) die Belegungsrate von nur 47% (17/36) im ersten Bezugsjahr und 2) Baufeuchte und Nutzerverhalten. Die Anwendbarkeit des Passivhausstandards in der kalten Klimazone und in der Küstenregion Nordchinas wurde an den beiden ausgewählten Passivhausgebäuden nachgewiesen. Die beobachteten Ergebnisse entsprechen im Wesentlichen den Passivhausstandards. Aufgrund des Nutzerverhaltens und der Belegungsrate entspricht ein Teil der Indikatoren nicht den Erwartungen, jedoch zeigt das Passivhausgebäude herausragende Vorteile in Bezug auf Energieeinsparung und Innenraumkomfort, verglichen mit den aktuellen Green Building oder anderen Gebäudeenergieeinsparungsstandards in China. German Passive House Institute has monitored many operating passive houses in Europe to prove that the heating demand of newly built passive houses is in the range of 15 kWh/m2a, which is only 10-20% of the heating demand of Green Building Standards or other building energy-saving standards in China. The passive house can significantly decrease heating demand and reduce CO2 emissions in China, these issues are of great concern to the Chinese government and society. Consequently, China built more than 10 million square meters of ultra-low energy buildings (passive houses) in 2016-2020 and will build another 50 million square meters by 2025. Hence, to do monitoring research on the energy consumption of passive houses in China is the main motivation of this thesis. The goal is to validate and supplement the applicability of the Passive House Standards considering the Chinese user habits and local climate characteristics. One passive house residential building, one passive house office building and one Green Building in Sino-German Ecopark Qingdao in northern China are selected for this thesis. The research method used is mainly divided into four steps: a) establishing an energy consumption monitoring system to obtain energy consumption data. b) Passive House Planning Package (PHPP), Therm, and IBE are simulation tools used in this thesis to evaluate building energy consumption and thermal bridges. c) comparing the energy consumption data of the passive house building in operation with the simulated or designed energy consumption data, and then d) finding out the differences between the two sets of data, through analyzing the reasons to achieve the purpose of improving and upgrading the energy efficiency of the building. Firstly, 3 years of operational data of the passive house public building built in 2016 were analyzed. The building system was commissioned through the data of high energy consumption in 2017. Then, the energy consumption data for the subsequent 2 years were significantly lower. It showed the importance of HVAC commissioning for large passive house public buildings. The analysis of the energy consumption data and indoor environment parameters for the subsequent 2 years revealed that the space heating demand was larger than the simulated value and the cooling demand matched the simulated value well. The building’s indoor environment was maintained within the set comfort range year-round. Secondly, a passive house residential building containing 36 apartments, which was completed in 2020, was selected for monitoring. This is the first time that a passive house residential building was monitored in China. During the monitoring period, a comprehensive comparison of the design and construction techniques between the passive house residential building and a neighbouring Green Building residential building revealed that the passive house residential building would significantly reduce space heating demand, and it was suggested that large-scale promotion of passive houses would be a beneficial way to achieve China's dual carbon goals. After the monitoring was completed, the analysis showed that the actual heating demand was higher than the predicted heating demand, and the primary energy consumption and indoor comfort met the passive house standards well. The reasons for the higher heating demand are 1) the occupancy rate of only 47% (17/36) in the first moving-in year and 2) initial wall moisture and user behavior. The applicability of Passive House standards in the cold climate zone and coastal region of northern China was proven in the selected two passive house buildings. The monitored results meet basically the passive house standards. Because of the user behavior and occupation rate, part of the indicators doesn’t meet expectations, however, the passive house building shows outstanding advantages in terms of energy-saving and indoor comfort, compared with other current Green Building Standards or other building energy-saving standards in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Han, Fei;

    Das Passivhaus Institut hat eine große Anzahl genutzter Passivhäuser in Europa messtechnisch ausgewertet und konnte nachweisen, dass der Heizwärmebedarf neu gebauter Passivhäuser im Bereich von 15 kWh/m2a liegt, was nur 10-20% des Heizwärmebedarfs des Green Building oder anderer Energiesparstandards für Gebäude in China entspricht. Mit dem Passivhaus können den Heizwärmebedarf und die CO2-Emissionen in China erheblich gesenkt werden, was für die chinesische Regierung und Gesellschaft von großer Bedeutung ist. Folglich hat China im Zeitraum 2016-2020 mehr als 10 Millionen Quadratmeter Niedrigstenergiegebäude (Passivhäuser) gebaut und wird bis 2025 weitere 50 Millionen Quadratmeter errichten. Daher ist die Hauptmotivation dieser Arbeit, den Energieverbrauch von Passivhäusern in China zu untersuchen. Ziel ist, die Anwendbarkeit der Passivhausstandards unter Berücksichtigung der chinesischen Nutzergewohnheiten und klimatischen Besonderheiten zu validieren und ergänzende Vorschläge für die Anwendung zu unterbreiten. Für diese Arbeit wurden ein Passivhaus-Wohngebäude, ein Passivhaus-Bürogebäude und ein Green Building im Deutsch-Chinesischen Ökopark Qingdao, Nordchina, als Gegenstand der Untersuchung ausgewählt. Die angewandte Forschungsmethode gliedert sich im Wesentlichen in vier Schritte: a) Einrichtung eines Energieverbrauchsüberwachungssystems, um Energieverbrauchsdaten zu erhalten. b) Passivhaus-Planungspaket (PHPP), Therm und IBE sind Simulationswerkzeuge, die in dieser Arbeit zur Bewertung des Gebäudeenergieverbrauchs und der Wärmebrücken verwendet werden. c) Vergleich der Energieverbrauchsdaten des Passivhausgebäudes mit den simulierten oder entworfenen Energieverbrauchsdaten und schließlich d) Ermittlung der Unterschiede zwischen den beiden Datensätzen durch Analyse der Ursachen, um die Energieeffizienz des Gebäudes zu optimieren und aufzuwerten. Für die Studie wurden zunächst 3-jährige Betriebsdaten des 2016 errichteten Passivhauses-Bürogebäude ausgewertet. Das Gebäudesystem wurde gemäß den Daten des hohen Energieverbrauchs im Jahr 2017 in Betrieb genommen. Danach waren die Energieverbrauchsdaten in den folgenden zwei Jahren deutlich niedriger. Dies zeigt, wie wichtig die Inbetriebnahme der HVAC-Anlage für große öffentliche Passivhausgebäude ist. Die Analyse der Energieverbrauchsdaten und der innere Komfort-Parameter für die folgenden zwei Jahre ergab, dass der Heizwärmebedarf größer war als der simulierte Wert und der Kühlbedarf gut mit dem simulierten Wert übereinstimmte. Der innere Komfort des Gebäudes wurde das ganze Jahr über innerhalb des festgelegten Komfortbereichs gehalten. Zweitens wurde ein Passivhaus-Wohngebäude mit 36 Wohneinheiten, das im Jahr 2020 fertiggestellt wurde, messtechnisch begleitet. Erstmalig wurde ein Passivhaus-Wohngebäude in China messtechnisch ausgewertet. Während des Überwachungszeitraums ergab ein umfassender Vergleich der Entwurfs- und Konstruktionstechniken zwischen dem Passivhaus-Wohngebäude und einem benachbarten als Green Building gebauten Wohngebäude, dass im Passivhaus-Wohngebäude der Heizwärmebedarf im Vergleich zu dem Green Building Wohngebäude erheblich reduziert wurde, und es wurde vorgeschlagen, dass eine groß angelegte Förderung von Passivhäusern ein vorteilhafter Weg wäre, um Chinas Dual-Carbon-Ziele zu erreichen. Nach Abschluss der Überwachung zeigte die Analyse, dass der tatsächliche Heizwärmebedarf höher war als der vorhergesagte Wert, und dass der Primärenergieverbrauch und der innere Komfort den Passivhausstandards entsprachen. Die Gründe für den höheren Heizwärmebedarf sind 1) die Belegungsrate von nur 47% (17/36) im ersten Bezugsjahr und 2) Baufeuchte und Nutzerverhalten. Die Anwendbarkeit des Passivhausstandards in der kalten Klimazone und in der Küstenregion Nordchinas wurde an den beiden ausgewählten Passivhausgebäuden nachgewiesen. Die beobachteten Ergebnisse entsprechen im Wesentlichen den Passivhausstandards. Aufgrund des Nutzerverhaltens und der Belegungsrate entspricht ein Teil der Indikatoren nicht den Erwartungen, jedoch zeigt das Passivhausgebäude herausragende Vorteile in Bezug auf Energieeinsparung und Innenraumkomfort, verglichen mit den aktuellen Green Building oder anderen Gebäudeenergieeinsparungsstandards in China. German Passive House Institute has monitored many operating passive houses in Europe to prove that the heating demand of newly built passive houses is in the range of 15 kWh/m2a, which is only 10-20% of the heating demand of Green Building Standards or other building energy-saving standards in China. The passive house can significantly decrease heating demand and reduce CO2 emissions in China, these issues are of great concern to the Chinese government and society. Consequently, China built more than 10 million square meters of ultra-low energy buildings (passive houses) in 2016-2020 and will build another 50 million square meters by 2025. Hence, to do monitoring research on the energy consumption of passive houses in China is the main motivation of this thesis. The goal is to validate and supplement the applicability of the Passive House Standards considering the Chinese user habits and local climate characteristics. One passive house residential building, one passive house office building and one Green Building in Sino-German Ecopark Qingdao in northern China are selected for this thesis. The research method used is mainly divided into four steps: a) establishing an energy consumption monitoring system to obtain energy consumption data. b) Passive House Planning Package (PHPP), Therm, and IBE are simulation tools used in this thesis to evaluate building energy consumption and thermal bridges. c) comparing the energy consumption data of the passive house building in operation with the simulated or designed energy consumption data, and then d) finding out the differences between the two sets of data, through analyzing the reasons to achieve the purpose of improving and upgrading the energy efficiency of the building. Firstly, 3 years of operational data of the passive house public building built in 2016 were analyzed. The building system was commissioned through the data of high energy consumption in 2017. Then, the energy consumption data for the subsequent 2 years were significantly lower. It showed the importance of HVAC commissioning for large passive house public buildings. The analysis of the energy consumption data and indoor environment parameters for the subsequent 2 years revealed that the space heating demand was larger than the simulated value and the cooling demand matched the simulated value well. The building’s indoor environment was maintained within the set comfort range year-round. Secondly, a passive house residential building containing 36 apartments, which was completed in 2020, was selected for monitoring. This is the first time that a passive house residential building was monitored in China. During the monitoring period, a comprehensive comparison of the design and construction techniques between the passive house residential building and a neighbouring Green Building residential building revealed that the passive house residential building would significantly reduce space heating demand, and it was suggested that large-scale promotion of passive houses would be a beneficial way to achieve China's dual carbon goals. After the monitoring was completed, the analysis showed that the actual heating demand was higher than the predicted heating demand, and the primary energy consumption and indoor comfort met the passive house standards well. The reasons for the higher heating demand are 1) the occupancy rate of only 47% (17/36) in the first moving-in year and 2) initial wall moisture and user behavior. The applicability of Passive House standards in the cold climate zone and coastal region of northern China was proven in the selected two passive house buildings. The monitored results meet basically the passive house standards. Because of the user behavior and occupation rate, part of the indicators doesn’t meet expectations, however, the passive house building shows outstanding advantages in terms of energy-saving and indoor comfort, compared with other current Green Building Standards or other building energy-saving standards in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hofer, Thomas;

    Im heutigen Kontext hat das Thema Nachhaltigkeit eine große Bedeutung erlangt, die sich über verschiedene Bereiche und Disziplinen erstreckt. Auch in der Softwareentwicklung gewinnt das Thema der Nachhaltigkeit zunehmend an Bedeutung. Hierbei erfolgt eine Unterscheidung zwischen der wirtschaftlichen, ökologischen, technischen, sozialen und individuellen Dimension der Nachhaltigkeit, welche jeweils unterschiedliche Aspekte der Nachhaltigkeit adressieren. Während traditionelle Methoden der Softwareentwicklung bereits Ansätze und Rahmenbedingungen für die Schaffung nachhaltiger Softwaresysteme bieten, besteht im Kontext agiler Entwicklungspraktiken, die zu den am weitesten verbreiteten Vorgehensweisen zählen, noch ein Mangel an Ansätzen zur Einbeziehung von Nachhaltigkeitsaspekten. In der vorliegenden Arbeit steht daher die Integration von Nachhaltigkeitsaspekten in der agilen Softwareentwicklung im Mittelpunkt, um nachhaltige Softwaresysteme zu entwickeln. Es wird ein im Rahmen dieser Masterarbeit implementierter Software Prototyp präsentiert, der es Mitgliedern eines Scrum Teams ermöglicht, Auswirkungen von User Stories auf die fünf Nachhaltigkeitsdimensionen zu schätzen. Ziel des Prototyps ist es, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, damit Softwareprodukte entstehen können, die möglichst nachhaltig gestaltet sind. Zu Beginn dieser Arbeit wurde eine Literatursuche durchgeführt, um existierende Methoden und Techniken zur Implementierung von nachhaltigen Softwaresystemen im agilen Kontext zu identifizieren. Die Ergebnisse zeigen, dass die aktuelle Literatur nur begrenzte, überwiegend abstrakte Ansätze diskutiert. Die Evaluierung des Prototyps verdeutlicht, dass sich der Einsatz des Prototyps vor allem in den Scrum Events Product Backlog Refinement und Sprint Review eignet. Der Prototyp kann dazu beitragen, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, indem Diskussionen zum Thema Nachhaltigkeit angeregt werden und dadurch unterschiedliche Perspektiven und unbeachtete Aspekte zum Thema Nachhaltigkeit aufgezeigt werden können. Die Anwendung des Prototyps bringt im Kontext eines bereits zeitkritischen Ansatzes wie Scrum jedoch auch Herausforderungen mit sich, zu denen Zeit- und Kostenaspekte sowie potenzielle Motivationsprobleme innerhalb eines Scrum Teams zählen. In today's context, the topic of sustainability has gained great importance, which extends across different areas and disciplines. The topic of sustainability is also becoming increasingly important in software development. A distinction is made between the economic, environmental, technical, social and individual dimensions of sustainability, each of which addresses different aspects of sustainability. While traditional methods of software development already offer approaches and framework conditions for the creation of sustainable software systems, there is still a lack of approaches to include sustainability aspects in the context of agile development practices, which are among the most widespread approaches. The present work therefore focuses on the integration of sustainability aspects in agile software development in order to develop sustainable software systems. A software prototype implemented as part of this master's thesis is presented, which enables members of a scrum team to estimate the impact of user stories on the five sustainability dimensions. The goal of the prototype is to increase sustainability awareness within a Scrum team, so that software products can be created that are designed to be as sustainable as possible. At the beginning of this work, a literature search was carried out to identify existing methods and techniques for implementing sustainable software systems in an agile context. The results show that the current literature only discusses limited, mostly abstract approaches. The evaluation of the prototype clarifies that the use of the prototype is particularly suitable in the Scrum events product backlog refinement and sprint review. The prototype can contribute to stimulating discussions on the topic of sustainability and thereby different perspectives and unnoticed aspects of sustainability can be pointed out. However, using the prototype in the context of an already time-sensitive approach like Scrum also poses challenges, including time and cost considerations and potential motivation issues within a Scrum team.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JKU ePub
    Master thesis . 2023
    Data sources: JKU ePub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JKU ePub
      Master thesis . 2023
      Data sources: JKU ePub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hofer, Thomas;

    Im heutigen Kontext hat das Thema Nachhaltigkeit eine große Bedeutung erlangt, die sich über verschiedene Bereiche und Disziplinen erstreckt. Auch in der Softwareentwicklung gewinnt das Thema der Nachhaltigkeit zunehmend an Bedeutung. Hierbei erfolgt eine Unterscheidung zwischen der wirtschaftlichen, ökologischen, technischen, sozialen und individuellen Dimension der Nachhaltigkeit, welche jeweils unterschiedliche Aspekte der Nachhaltigkeit adressieren. Während traditionelle Methoden der Softwareentwicklung bereits Ansätze und Rahmenbedingungen für die Schaffung nachhaltiger Softwaresysteme bieten, besteht im Kontext agiler Entwicklungspraktiken, die zu den am weitesten verbreiteten Vorgehensweisen zählen, noch ein Mangel an Ansätzen zur Einbeziehung von Nachhaltigkeitsaspekten. In der vorliegenden Arbeit steht daher die Integration von Nachhaltigkeitsaspekten in der agilen Softwareentwicklung im Mittelpunkt, um nachhaltige Softwaresysteme zu entwickeln. Es wird ein im Rahmen dieser Masterarbeit implementierter Software Prototyp präsentiert, der es Mitgliedern eines Scrum Teams ermöglicht, Auswirkungen von User Stories auf die fünf Nachhaltigkeitsdimensionen zu schätzen. Ziel des Prototyps ist es, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, damit Softwareprodukte entstehen können, die möglichst nachhaltig gestaltet sind. Zu Beginn dieser Arbeit wurde eine Literatursuche durchgeführt, um existierende Methoden und Techniken zur Implementierung von nachhaltigen Softwaresystemen im agilen Kontext zu identifizieren. Die Ergebnisse zeigen, dass die aktuelle Literatur nur begrenzte, überwiegend abstrakte Ansätze diskutiert. Die Evaluierung des Prototyps verdeutlicht, dass sich der Einsatz des Prototyps vor allem in den Scrum Events Product Backlog Refinement und Sprint Review eignet. Der Prototyp kann dazu beitragen, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, indem Diskussionen zum Thema Nachhaltigkeit angeregt werden und dadurch unterschiedliche Perspektiven und unbeachtete Aspekte zum Thema Nachhaltigkeit aufgezeigt werden können. Die Anwendung des Prototyps bringt im Kontext eines bereits zeitkritischen Ansatzes wie Scrum jedoch auch Herausforderungen mit sich, zu denen Zeit- und Kostenaspekte sowie potenzielle Motivationsprobleme innerhalb eines Scrum Teams zählen. In today's context, the topic of sustainability has gained great importance, which extends across different areas and disciplines. The topic of sustainability is also becoming increasingly important in software development. A distinction is made between the economic, environmental, technical, social and individual dimensions of sustainability, each of which addresses different aspects of sustainability. While traditional methods of software development already offer approaches and framework conditions for the creation of sustainable software systems, there is still a lack of approaches to include sustainability aspects in the context of agile development practices, which are among the most widespread approaches. The present work therefore focuses on the integration of sustainability aspects in agile software development in order to develop sustainable software systems. A software prototype implemented as part of this master's thesis is presented, which enables members of a scrum team to estimate the impact of user stories on the five sustainability dimensions. The goal of the prototype is to increase sustainability awareness within a Scrum team, so that software products can be created that are designed to be as sustainable as possible. At the beginning of this work, a literature search was carried out to identify existing methods and techniques for implementing sustainable software systems in an agile context. The results show that the current literature only discusses limited, mostly abstract approaches. The evaluation of the prototype clarifies that the use of the prototype is particularly suitable in the Scrum events product backlog refinement and sprint review. The prototype can contribute to stimulating discussions on the topic of sustainability and thereby different perspectives and unnoticed aspects of sustainability can be pointed out. However, using the prototype in the context of an already time-sensitive approach like Scrum also poses challenges, including time and cost considerations and potential motivation issues within a Scrum team.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JKU ePub
    Master thesis . 2023
    Data sources: JKU ePub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JKU ePub
      Master thesis . 2023
      Data sources: JKU ePub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; +1 Authors

    This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48440/gf...
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48440/gf...
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; +1 Authors

    This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48440/gf...
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48440/gf...
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Karyotakis, Konstantinos-Ektor; Mongellaz, Rémi; Lidberg, Mathias R;

    The main contribution of this paper lies in the development of a novel front-to-rear axle brake force distribution strategy for the regenerative braking control of a vehicle with a high-speed electric drive unit at the front axle. The strategy adapts the brake proportioning to provide extended room for energy recuperation of the electric motor when the vehicle drivability and safety requirements permit. In detail, the strategy is adaptive to cornering intensity enabling the range to be further extended in real-world applications. The regenerative braking control features a brake blending control algorithm and a powertrain controller, which are decisive for enhancing the braking performance. Lastly, the regenerative braking control is implemented in the highfidelity simulation environment Simcenter Amesim, where system efficiency and regenerative brake performance are analysed. Results confirm that the designed regenerative braking greatly improves the effectiveness of energy recuperation for a front-wheel driven electric vehicle with a high-speed drive at the front axle. In conclusion, it is shown that it is feasible to use the high-speed drive with the proposed control design for regenerative braking.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Article . 2021
    Data sources: Chalmers Research
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Preprint . 2021
    Data sources: Chalmers Research
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Article . 2021
      Data sources: Chalmers Research
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Preprint . 2021
      Data sources: Chalmers Research
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Karyotakis, Konstantinos-Ektor; Mongellaz, Rémi; Lidberg, Mathias R;

    The main contribution of this paper lies in the development of a novel front-to-rear axle brake force distribution strategy for the regenerative braking control of a vehicle with a high-speed electric drive unit at the front axle. The strategy adapts the brake proportioning to provide extended room for energy recuperation of the electric motor when the vehicle drivability and safety requirements permit. In detail, the strategy is adaptive to cornering intensity enabling the range to be further extended in real-world applications. The regenerative braking control features a brake blending control algorithm and a powertrain controller, which are decisive for enhancing the braking performance. Lastly, the regenerative braking control is implemented in the highfidelity simulation environment Simcenter Amesim, where system efficiency and regenerative brake performance are analysed. Results confirm that the designed regenerative braking greatly improves the effectiveness of energy recuperation for a front-wheel driven electric vehicle with a high-speed drive at the front axle. In conclusion, it is shown that it is feasible to use the high-speed drive with the proposed control design for regenerative braking.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Article . 2021
    Data sources: Chalmers Research
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Preprint . 2021
    Data sources: Chalmers Research
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Article . 2021
      Data sources: Chalmers Research
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Preprint . 2021
      Data sources: Chalmers Research
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This presentation was part of the EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures (September 16 & 17, 2021, hybrid event in Amsterdam and online).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This presentation was part of the EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures (September 16 & 17, 2021, hybrid event in Amsterdam and online).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4,032 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pari L; Alfano V; Suardi A; Bergonzoli S; +6 Authors

    This work has been developed under the AGROinLOG Project, “Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe”. An Integrated Biomass Logistics Center (IBLC), is based on the introduction of new production chains into existing agro-industries by using new biomass feedstock. The AGROinLOG Project has dedicated great attention to investigate the potential of cereal chaff as a valuable resource.Chaff is the fine fraction of the thrashing residues, not usually collected. Chaff is made up of glumes, seed husks, rachis and the tinner part of the cereal stems, whole and cracked kernels, as well as weed seeds.Currently there are several mechanical solutions available on the market for chaff recovery, and others are still at prototype stage, but theyare not so common and very often unknown to the farmers.So far, the literature reportsfew cases of chaff collection with the specific purpose of weed seeds removal, but it still lacks specificexperiments on these machinesintentionally used for biomass collection.For this reason, during the Project AGROinLOG a series of large field tests were performed using an independent scientific approach with different kind of chaff harvesting technologiesin France, Sweden and Italy from 2017 to 2019.The present study collects the results of these activities with the aim to fill that gap and provide deeper understanding in the possibility to enhance the current cereal harvesting method, in order to improve the quantity of biomass collected by including the chaff. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 62-68

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pari L; Alfano V; Suardi A; Bergonzoli S; +6 Authors

    This work has been developed under the AGROinLOG Project, “Demonstration of innovative integrated biomass logistics centres for the Agro-industry sector in Europe”. An Integrated Biomass Logistics Center (IBLC), is based on the introduction of new production chains into existing agro-industries by using new biomass feedstock. The AGROinLOG Project has dedicated great attention to investigate the potential of cereal chaff as a valuable resource.Chaff is the fine fraction of the thrashing residues, not usually collected. Chaff is made up of glumes, seed husks, rachis and the tinner part of the cereal stems, whole and cracked kernels, as well as weed seeds.Currently there are several mechanical solutions available on the market for chaff recovery, and others are still at prototype stage, but theyare not so common and very often unknown to the farmers.So far, the literature reportsfew cases of chaff collection with the specific purpose of weed seeds removal, but it still lacks specificexperiments on these machinesintentionally used for biomass collection.For this reason, during the Project AGROinLOG a series of large field tests were performed using an independent scientific approach with different kind of chaff harvesting technologiesin France, Sweden and Italy from 2017 to 2019.The present study collects the results of these activities with the aim to fill that gap and provide deeper understanding in the possibility to enhance the current cereal harvesting method, in order to improve the quantity of biomass collected by including the chaff. Proceedings of the 29th European Biomass Conference and Exhibition, 26-29 April 2021, Online, pp. 62-68

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/29t...
    Conference object . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/29t...
      Conference object . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andreas Androutsopoulos; Maria Bololia; Elpida Polychroni;

    The EU has set clear targets regarding energy conservation of buildings and heavily supports activities towards achieving these targets on a European scale. The Green Deal, renovation wave, Energy Performance of Buildings Directive (EPBD) and Energy Efficiency Directive (EED) are some examples of EU's actions. For more than a decade, Energy Performance Certificates provide detailed data about the current energy needs of a building/building unit as well as information about the building construction and systems. A Building Renovation Passport (BRP) has, on a European level lately, been conceived as a tool that can stimulate cost-effective renovation in the form of a long-term basis, step-by-step deep renovation roadmap following defined quality criteria, and outline energy renovation measures that will improve the energy performance of the building. A Digital Building Logbook (DBL) is another tool that can serve as an archive where all building information can be stored and continuously updated. In this way, a full record of the building history will be electronically available with data regarding construction plans and permits, maintenance and system replacement activities, energy and heat consumption and production, etc. Building Renovation Passports and the Digital Building Logbook are tools that can help in achieving energy efficiency in existing buildings and contribute to reaching the EU renovation wave goals. The objective of this report is to investigate how the current EPC schemes best make the link towards the BRP and the DBL to further incentivise and stimulate cost-effective deep energy renovations of buildings across Europe. Three surveys were carried out to collect relevant information about the current status of the EPC data records and to identify stakeholders' potential needs, perceptions, thoughts and expectations, regarding a future connection between the EPC and the BRP or DBL. These surveys were prepared in two forms: using an excel file format circulated via email, and through an online questionnaire. Their completion was carried out by 16 countries. Regarding the EPCs, the state or regional energy agencies are the owner of the EPC data records and make full use of them. Their current main usage is for statistical reasons in the majority of the countries and their access is publicly available in half of the responding countries. Many common data is stored in the EPC database which can be linked with other tools (half of the EPC databases are already linked with another source). Regarding the BRP, a review of existing European schemes showed that successful BRPs have combined the renovation advice with financial support, legal requirements and/or communication campaigns. An important factor of the BRP is that it should be issued by a qualified expert and should provide customised measures for the specific building together with the investment costs per renovation measure(s). The DBL analysis showed that it should provide access to building information and contribute to better decision-making for future interventions as well as operation, use and maintenance records. The building owner/user is proposed to have full access to the logbook and provide/input about energy bills and building plans/construction materials info. An important aspect is that every time the building undergoes intervention works, the DBL should be updated accordingly. The most important barrier is the lack of motivation to update the DBL contents followed by the absence of synergies and consistency with other tools. Another interesting finding is that both BRP and DBL should be fed automatically by EPC data without any user interference. There is a clear possible interconnection between EPC data and BRP and DBL future contents. In addition, BRP can be an instrument to increase the renovation rates and DBLs are necessary for the management of buildings' information. The linkage of EPC data and BRP and DBL can be strengthened by introducing BRP and DBL as voluntary schemes under national incentives and should be fully implemented once they have demonstrated acceptance by the stakeholders.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Andreas Androutsopoulos; Maria Bololia; Elpida Polychroni;

    The EU has set clear targets regarding energy conservation of buildings and heavily supports activities towards achieving these targets on a European scale. The Green Deal, renovation wave, Energy Performance of Buildings Directive (EPBD) and Energy Efficiency Directive (EED) are some examples of EU's actions. For more than a decade, Energy Performance Certificates provide detailed data about the current energy needs of a building/building unit as well as information about the building construction and systems. A Building Renovation Passport (BRP) has, on a European level lately, been conceived as a tool that can stimulate cost-effective renovation in the form of a long-term basis, step-by-step deep renovation roadmap following defined quality criteria, and outline energy renovation measures that will improve the energy performance of the building. A Digital Building Logbook (DBL) is another tool that can serve as an archive where all building information can be stored and continuously updated. In this way, a full record of the building history will be electronically available with data regarding construction plans and permits, maintenance and system replacement activities, energy and heat consumption and production, etc. Building Renovation Passports and the Digital Building Logbook are tools that can help in achieving energy efficiency in existing buildings and contribute to reaching the EU renovation wave goals. The objective of this report is to investigate how the current EPC schemes best make the link towards the BRP and the DBL to further incentivise and stimulate cost-effective deep energy renovations of buildings across Europe. Three surveys were carried out to collect relevant information about the current status of the EPC data records and to identify stakeholders' potential needs, perceptions, thoughts and expectations, regarding a future connection between the EPC and the BRP or DBL. These surveys were prepared in two forms: using an excel file format circulated via email, and through an online questionnaire. Their completion was carried out by 16 countries. Regarding the EPCs, the state or regional energy agencies are the owner of the EPC data records and make full use of them. Their current main usage is for statistical reasons in the majority of the countries and their access is publicly available in half of the responding countries. Many common data is stored in the EPC database which can be linked with other tools (half of the EPC databases are already linked with another source). Regarding the BRP, a review of existing European schemes showed that successful BRPs have combined the renovation advice with financial support, legal requirements and/or communication campaigns. An important factor of the BRP is that it should be issued by a qualified expert and should provide customised measures for the specific building together with the investment costs per renovation measure(s). The DBL analysis showed that it should provide access to building information and contribute to better decision-making for future interventions as well as operation, use and maintenance records. The building owner/user is proposed to have full access to the logbook and provide/input about energy bills and building plans/construction materials info. An important aspect is that every time the building undergoes intervention works, the DBL should be updated accordingly. The most important barrier is the lack of motivation to update the DBL contents followed by the absence of synergies and consistency with other tools. Another interesting finding is that both BRP and DBL should be fed automatically by EPC data without any user interference. There is a clear possible interconnection between EPC data and BRP and DBL future contents. In addition, BRP can be an instrument to increase the renovation rates and DBLs are necessary for the management of buildings' information. The linkage of EPC data and BRP and DBL can be strengthened by introducing BRP and DBL as voluntary schemes under national incentives and should be fully implemented once they have demonstrated acceptance by the stakeholders.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pölzler, Thomas; Ortner, Florian; Meyer, Lukas H.; Sass, Oliver; +1 Authors

    Climate change increases the frequency and intensity of certain kinds of natural hazard events in alpine areas. This interdisciplinary study addresses the hypothetical possibility of relocating the residents of three alpine areas in Austria: the Sölk valleys, the Johnsbach valley, and the St. Lorenzen/Schwarzenbach valleys. Our particular focus is on these residents’ expectations about such relocations. We find that (1) many residents expect that in the next decades the state will provide them with a level of natural hazards protection, aid, and relief that allows them to continue to live in these valleys; (2) this expectation receives some legal protection but only when it is associated with fundamental rights; and (3) the expectation is morally significant, i.e., it ought to be considered in assessing the moral rightness or justness of relocation policies. These results suggest legal changes and likely extend to many other (Austrian) alpine areas as well. Fonds zur Förderung der Wissenschaftlichen Forschung W 1256-G15 Version of record

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    uni≡pub (unipub)
    Article . 2022
    Data sources: uni≡pub (unipub)
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      uni≡pub (unipub)
      Article . 2022
      Data sources: uni≡pub (unipub)
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pölzler, Thomas; Ortner, Florian; Meyer, Lukas H.; Sass, Oliver; +1 Authors

    Climate change increases the frequency and intensity of certain kinds of natural hazard events in alpine areas. This interdisciplinary study addresses the hypothetical possibility of relocating the residents of three alpine areas in Austria: the Sölk valleys, the Johnsbach valley, and the St. Lorenzen/Schwarzenbach valleys. Our particular focus is on these residents’ expectations about such relocations. We find that (1) many residents expect that in the next decades the state will provide them with a level of natural hazards protection, aid, and relief that allows them to continue to live in these valleys; (2) this expectation receives some legal protection but only when it is associated with fundamental rights; and (3) the expectation is morally significant, i.e., it ought to be considered in assessing the moral rightness or justness of relocation policies. These results suggest legal changes and likely extend to many other (Austrian) alpine areas as well. Fonds zur Förderung der Wissenschaftlichen Forschung W 1256-G15 Version of record

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    uni≡pub (unipub)
    Article . 2022
    Data sources: uni≡pub (unipub)
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Graz University (UGR...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      uni≡pub (unipub)
      Article . 2022
      Data sources: uni≡pub (unipub)
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eleonora Foschi; Selena Aureli; Angelo Paletta;

    Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eleonora Foschi; Selena Aureli; Angelo Paletta;

    Bio-based and biodegradable plastics (BBPs) are innovative materials, wholly or partially produced from biomass, with the potential to enhance the circulation of resources in the biological cycle of the Ellen MacArthur Foundation’s butterfly diagram. Although BBPs are generally considered more environmental-friendly than conventional plastics, robust scientific evidence is still missing. The lack of tools and metrics to assess the circularity and sustainability of the BBPs industry poses relevant challenges for its upscaling and contribution to climate neutrality goals in Europe. It calls for adopting system and life cycle thinking, guided by multi-level and multi-dimensional examinations, which led researchers to build a comprehensive picture of trends, gaps and future orientations that may boost a sustainable circular bioeconomy in the sector. The value- chain based and multi-faceted SWOT analysis that emerged from the intersection of system and corporate data reveals the need to establish a combined circular bioeconomy strategy where incentives to integrated local supply chain, dedicated EPR scheme, eco-design guidelines, revised EoL standards, new clear labelling schemes and harmonised sustainability criteria should be prioritized and conjointly pursued to accelerate the transition towards a sustainable circular bioeconomy of the BBPs value chain. European Journal of Social Impact and Circular Economy, V. 4 N. 2 (2023)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Martetschläger, Lukas;

    Most plastic products in circulation worldwide are based on fossil petroleum and are not biodegradable,which is known to be one of the biggest burdens and threats to the environment. One possible solution to this problem could be the use of bio-based and biodegradable polyhydroxybutyrate (PHB). Undernitrogen and phosphate depletion, Synechocystis sp. PCC 6714 produces PHB. As a positive side-effect,this method also binds the greenhouse gas CO2 through photosynthesis.This thesis analyses the results of a series of experiments carried out as part of basic research to better understand a possible PHB production process. The main goal was to investigate the effects of different lactose concentrations between 1 and 10 g/L from concentrated whey on the microorganism,particularly on the PHB production. The following three main results were obtained:Firstly, the cyanobacterium strain used could not metabolise lactose and even showed lower growth andPHB content of 2.2% at 1 g/L lactose compared to 4.2% without the addition of whey in the shake flaskexperiment. When upscaling in a photobioreactor, the same ratios were observed between cultivationswith and without whey, with the PHB content doubling to 6.5 and 10.5% (volumetric productivity 7.7and 21.1 mg/L/day).Secondly, the standard hydrolysation method for PHB quantification with concentrated sulfuric acid was compared with the alkaline sodium hydroxide method using a multivariate data analysis.Subsequently, the more promising acidic method was further optimised to reduce viscosity of sulfuricacid, gaining an optimum at 160 min, 14 M H2SO4, 100°C.Thirdly, as an alternative to the state of the art methods for recovering PHB, which use, e.g. the harmful chloroform, three ionic liquids based on the cation 1-Ethyl-3-methylimidazolium with three differentanions Dimethylphosphate, Acetate or Chloride were tested to dissolve the biomass but not thebiopolymer. 1-Ethyl-3-methylimidazolium Dimethylphosphate completely dissolved the biomass at75°C after 1 h and did not decompose or dissolve the PHB so that it could be implemented in a complete recovery process.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Martetschläger, Lukas;

    Most plastic products in circulation worldwide are based on fossil petroleum and are not biodegradable,which is known to be one of the biggest burdens and threats to the environment. One possible solution to this problem could be the use of bio-based and biodegradable polyhydroxybutyrate (PHB). Undernitrogen and phosphate depletion, Synechocystis sp. PCC 6714 produces PHB. As a positive side-effect,this method also binds the greenhouse gas CO2 through photosynthesis.This thesis analyses the results of a series of experiments carried out as part of basic research to better understand a possible PHB production process. The main goal was to investigate the effects of different lactose concentrations between 1 and 10 g/L from concentrated whey on the microorganism,particularly on the PHB production. The following three main results were obtained:Firstly, the cyanobacterium strain used could not metabolise lactose and even showed lower growth andPHB content of 2.2% at 1 g/L lactose compared to 4.2% without the addition of whey in the shake flaskexperiment. When upscaling in a photobioreactor, the same ratios were observed between cultivationswith and without whey, with the PHB content doubling to 6.5 and 10.5% (volumetric productivity 7.7and 21.1 mg/L/day).Secondly, the standard hydrolysation method for PHB quantification with concentrated sulfuric acid was compared with the alkaline sodium hydroxide method using a multivariate data analysis.Subsequently, the more promising acidic method was further optimised to reduce viscosity of sulfuricacid, gaining an optimum at 160 min, 14 M H2SO4, 100°C.Thirdly, as an alternative to the state of the art methods for recovering PHB, which use, e.g. the harmful chloroform, three ionic liquids based on the cation 1-Ethyl-3-methylimidazolium with three differentanions Dimethylphosphate, Acetate or Chloride were tested to dissolve the biomass but not thebiopolymer. 1-Ethyl-3-methylimidazolium Dimethylphosphate completely dissolved the biomass at75°C after 1 h and did not decompose or dissolve the PHB so that it could be implemented in a complete recovery process.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Han, Fei;

    Das Passivhaus Institut hat eine große Anzahl genutzter Passivhäuser in Europa messtechnisch ausgewertet und konnte nachweisen, dass der Heizwärmebedarf neu gebauter Passivhäuser im Bereich von 15 kWh/m2a liegt, was nur 10-20% des Heizwärmebedarfs des Green Building oder anderer Energiesparstandards für Gebäude in China entspricht. Mit dem Passivhaus können den Heizwärmebedarf und die CO2-Emissionen in China erheblich gesenkt werden, was für die chinesische Regierung und Gesellschaft von großer Bedeutung ist. Folglich hat China im Zeitraum 2016-2020 mehr als 10 Millionen Quadratmeter Niedrigstenergiegebäude (Passivhäuser) gebaut und wird bis 2025 weitere 50 Millionen Quadratmeter errichten. Daher ist die Hauptmotivation dieser Arbeit, den Energieverbrauch von Passivhäusern in China zu untersuchen. Ziel ist, die Anwendbarkeit der Passivhausstandards unter Berücksichtigung der chinesischen Nutzergewohnheiten und klimatischen Besonderheiten zu validieren und ergänzende Vorschläge für die Anwendung zu unterbreiten. Für diese Arbeit wurden ein Passivhaus-Wohngebäude, ein Passivhaus-Bürogebäude und ein Green Building im Deutsch-Chinesischen Ökopark Qingdao, Nordchina, als Gegenstand der Untersuchung ausgewählt. Die angewandte Forschungsmethode gliedert sich im Wesentlichen in vier Schritte: a) Einrichtung eines Energieverbrauchsüberwachungssystems, um Energieverbrauchsdaten zu erhalten. b) Passivhaus-Planungspaket (PHPP), Therm und IBE sind Simulationswerkzeuge, die in dieser Arbeit zur Bewertung des Gebäudeenergieverbrauchs und der Wärmebrücken verwendet werden. c) Vergleich der Energieverbrauchsdaten des Passivhausgebäudes mit den simulierten oder entworfenen Energieverbrauchsdaten und schließlich d) Ermittlung der Unterschiede zwischen den beiden Datensätzen durch Analyse der Ursachen, um die Energieeffizienz des Gebäudes zu optimieren und aufzuwerten. Für die Studie wurden zunächst 3-jährige Betriebsdaten des 2016 errichteten Passivhauses-Bürogebäude ausgewertet. Das Gebäudesystem wurde gemäß den Daten des hohen Energieverbrauchs im Jahr 2017 in Betrieb genommen. Danach waren die Energieverbrauchsdaten in den folgenden zwei Jahren deutlich niedriger. Dies zeigt, wie wichtig die Inbetriebnahme der HVAC-Anlage für große öffentliche Passivhausgebäude ist. Die Analyse der Energieverbrauchsdaten und der innere Komfort-Parameter für die folgenden zwei Jahre ergab, dass der Heizwärmebedarf größer war als der simulierte Wert und der Kühlbedarf gut mit dem simulierten Wert übereinstimmte. Der innere Komfort des Gebäudes wurde das ganze Jahr über innerhalb des festgelegten Komfortbereichs gehalten. Zweitens wurde ein Passivhaus-Wohngebäude mit 36 Wohneinheiten, das im Jahr 2020 fertiggestellt wurde, messtechnisch begleitet. Erstmalig wurde ein Passivhaus-Wohngebäude in China messtechnisch ausgewertet. Während des Überwachungszeitraums ergab ein umfassender Vergleich der Entwurfs- und Konstruktionstechniken zwischen dem Passivhaus-Wohngebäude und einem benachbarten als Green Building gebauten Wohngebäude, dass im Passivhaus-Wohngebäude der Heizwärmebedarf im Vergleich zu dem Green Building Wohngebäude erheblich reduziert wurde, und es wurde vorgeschlagen, dass eine groß angelegte Förderung von Passivhäusern ein vorteilhafter Weg wäre, um Chinas Dual-Carbon-Ziele zu erreichen. Nach Abschluss der Überwachung zeigte die Analyse, dass der tatsächliche Heizwärmebedarf höher war als der vorhergesagte Wert, und dass der Primärenergieverbrauch und der innere Komfort den Passivhausstandards entsprachen. Die Gründe für den höheren Heizwärmebedarf sind 1) die Belegungsrate von nur 47% (17/36) im ersten Bezugsjahr und 2) Baufeuchte und Nutzerverhalten. Die Anwendbarkeit des Passivhausstandards in der kalten Klimazone und in der Küstenregion Nordchinas wurde an den beiden ausgewählten Passivhausgebäuden nachgewiesen. Die beobachteten Ergebnisse entsprechen im Wesentlichen den Passivhausstandards. Aufgrund des Nutzerverhaltens und der Belegungsrate entspricht ein Teil der Indikatoren nicht den Erwartungen, jedoch zeigt das Passivhausgebäude herausragende Vorteile in Bezug auf Energieeinsparung und Innenraumkomfort, verglichen mit den aktuellen Green Building oder anderen Gebäudeenergieeinsparungsstandards in China. German Passive House Institute has monitored many operating passive houses in Europe to prove that the heating demand of newly built passive houses is in the range of 15 kWh/m2a, which is only 10-20% of the heating demand of Green Building Standards or other building energy-saving standards in China. The passive house can significantly decrease heating demand and reduce CO2 emissions in China, these issues are of great concern to the Chinese government and society. Consequently, China built more than 10 million square meters of ultra-low energy buildings (passive houses) in 2016-2020 and will build another 50 million square meters by 2025. Hence, to do monitoring research on the energy consumption of passive houses in China is the main motivation of this thesis. The goal is to validate and supplement the applicability of the Passive House Standards considering the Chinese user habits and local climate characteristics. One passive house residential building, one passive house office building and one Green Building in Sino-German Ecopark Qingdao in northern China are selected for this thesis. The research method used is mainly divided into four steps: a) establishing an energy consumption monitoring system to obtain energy consumption data. b) Passive House Planning Package (PHPP), Therm, and IBE are simulation tools used in this thesis to evaluate building energy consumption and thermal bridges. c) comparing the energy consumption data of the passive house building in operation with the simulated or designed energy consumption data, and then d) finding out the differences between the two sets of data, through analyzing the reasons to achieve the purpose of improving and upgrading the energy efficiency of the building. Firstly, 3 years of operational data of the passive house public building built in 2016 were analyzed. The building system was commissioned through the data of high energy consumption in 2017. Then, the energy consumption data for the subsequent 2 years were significantly lower. It showed the importance of HVAC commissioning for large passive house public buildings. The analysis of the energy consumption data and indoor environment parameters for the subsequent 2 years revealed that the space heating demand was larger than the simulated value and the cooling demand matched the simulated value well. The building’s indoor environment was maintained within the set comfort range year-round. Secondly, a passive house residential building containing 36 apartments, which was completed in 2020, was selected for monitoring. This is the first time that a passive house residential building was monitored in China. During the monitoring period, a comprehensive comparison of the design and construction techniques between the passive house residential building and a neighbouring Green Building residential building revealed that the passive house residential building would significantly reduce space heating demand, and it was suggested that large-scale promotion of passive houses would be a beneficial way to achieve China's dual carbon goals. After the monitoring was completed, the analysis showed that the actual heating demand was higher than the predicted heating demand, and the primary energy consumption and indoor comfort met the passive house standards well. The reasons for the higher heating demand are 1) the occupancy rate of only 47% (17/36) in the first moving-in year and 2) initial wall moisture and user behavior. The applicability of Passive House standards in the cold climate zone and coastal region of northern China was proven in the selected two passive house buildings. The monitored results meet basically the passive house standards. Because of the user behavior and occupation rate, part of the indicators doesn’t meet expectations, however, the passive house building shows outstanding advantages in terms of energy-saving and indoor comfort, compared with other current Green Building Standards or other building energy-saving standards in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Han, Fei;

    Das Passivhaus Institut hat eine große Anzahl genutzter Passivhäuser in Europa messtechnisch ausgewertet und konnte nachweisen, dass der Heizwärmebedarf neu gebauter Passivhäuser im Bereich von 15 kWh/m2a liegt, was nur 10-20% des Heizwärmebedarfs des Green Building oder anderer Energiesparstandards für Gebäude in China entspricht. Mit dem Passivhaus können den Heizwärmebedarf und die CO2-Emissionen in China erheblich gesenkt werden, was für die chinesische Regierung und Gesellschaft von großer Bedeutung ist. Folglich hat China im Zeitraum 2016-2020 mehr als 10 Millionen Quadratmeter Niedrigstenergiegebäude (Passivhäuser) gebaut und wird bis 2025 weitere 50 Millionen Quadratmeter errichten. Daher ist die Hauptmotivation dieser Arbeit, den Energieverbrauch von Passivhäusern in China zu untersuchen. Ziel ist, die Anwendbarkeit der Passivhausstandards unter Berücksichtigung der chinesischen Nutzergewohnheiten und klimatischen Besonderheiten zu validieren und ergänzende Vorschläge für die Anwendung zu unterbreiten. Für diese Arbeit wurden ein Passivhaus-Wohngebäude, ein Passivhaus-Bürogebäude und ein Green Building im Deutsch-Chinesischen Ökopark Qingdao, Nordchina, als Gegenstand der Untersuchung ausgewählt. Die angewandte Forschungsmethode gliedert sich im Wesentlichen in vier Schritte: a) Einrichtung eines Energieverbrauchsüberwachungssystems, um Energieverbrauchsdaten zu erhalten. b) Passivhaus-Planungspaket (PHPP), Therm und IBE sind Simulationswerkzeuge, die in dieser Arbeit zur Bewertung des Gebäudeenergieverbrauchs und der Wärmebrücken verwendet werden. c) Vergleich der Energieverbrauchsdaten des Passivhausgebäudes mit den simulierten oder entworfenen Energieverbrauchsdaten und schließlich d) Ermittlung der Unterschiede zwischen den beiden Datensätzen durch Analyse der Ursachen, um die Energieeffizienz des Gebäudes zu optimieren und aufzuwerten. Für die Studie wurden zunächst 3-jährige Betriebsdaten des 2016 errichteten Passivhauses-Bürogebäude ausgewertet. Das Gebäudesystem wurde gemäß den Daten des hohen Energieverbrauchs im Jahr 2017 in Betrieb genommen. Danach waren die Energieverbrauchsdaten in den folgenden zwei Jahren deutlich niedriger. Dies zeigt, wie wichtig die Inbetriebnahme der HVAC-Anlage für große öffentliche Passivhausgebäude ist. Die Analyse der Energieverbrauchsdaten und der innere Komfort-Parameter für die folgenden zwei Jahre ergab, dass der Heizwärmebedarf größer war als der simulierte Wert und der Kühlbedarf gut mit dem simulierten Wert übereinstimmte. Der innere Komfort des Gebäudes wurde das ganze Jahr über innerhalb des festgelegten Komfortbereichs gehalten. Zweitens wurde ein Passivhaus-Wohngebäude mit 36 Wohneinheiten, das im Jahr 2020 fertiggestellt wurde, messtechnisch begleitet. Erstmalig wurde ein Passivhaus-Wohngebäude in China messtechnisch ausgewertet. Während des Überwachungszeitraums ergab ein umfassender Vergleich der Entwurfs- und Konstruktionstechniken zwischen dem Passivhaus-Wohngebäude und einem benachbarten als Green Building gebauten Wohngebäude, dass im Passivhaus-Wohngebäude der Heizwärmebedarf im Vergleich zu dem Green Building Wohngebäude erheblich reduziert wurde, und es wurde vorgeschlagen, dass eine groß angelegte Förderung von Passivhäusern ein vorteilhafter Weg wäre, um Chinas Dual-Carbon-Ziele zu erreichen. Nach Abschluss der Überwachung zeigte die Analyse, dass der tatsächliche Heizwärmebedarf höher war als der vorhergesagte Wert, und dass der Primärenergieverbrauch und der innere Komfort den Passivhausstandards entsprachen. Die Gründe für den höheren Heizwärmebedarf sind 1) die Belegungsrate von nur 47% (17/36) im ersten Bezugsjahr und 2) Baufeuchte und Nutzerverhalten. Die Anwendbarkeit des Passivhausstandards in der kalten Klimazone und in der Küstenregion Nordchinas wurde an den beiden ausgewählten Passivhausgebäuden nachgewiesen. Die beobachteten Ergebnisse entsprechen im Wesentlichen den Passivhausstandards. Aufgrund des Nutzerverhaltens und der Belegungsrate entspricht ein Teil der Indikatoren nicht den Erwartungen, jedoch zeigt das Passivhausgebäude herausragende Vorteile in Bezug auf Energieeinsparung und Innenraumkomfort, verglichen mit den aktuellen Green Building oder anderen Gebäudeenergieeinsparungsstandards in China. German Passive House Institute has monitored many operating passive houses in Europe to prove that the heating demand of newly built passive houses is in the range of 15 kWh/m2a, which is only 10-20% of the heating demand of Green Building Standards or other building energy-saving standards in China. The passive house can significantly decrease heating demand and reduce CO2 emissions in China, these issues are of great concern to the Chinese government and society. Consequently, China built more than 10 million square meters of ultra-low energy buildings (passive houses) in 2016-2020 and will build another 50 million square meters by 2025. Hence, to do monitoring research on the energy consumption of passive houses in China is the main motivation of this thesis. The goal is to validate and supplement the applicability of the Passive House Standards considering the Chinese user habits and local climate characteristics. One passive house residential building, one passive house office building and one Green Building in Sino-German Ecopark Qingdao in northern China are selected for this thesis. The research method used is mainly divided into four steps: a) establishing an energy consumption monitoring system to obtain energy consumption data. b) Passive House Planning Package (PHPP), Therm, and IBE are simulation tools used in this thesis to evaluate building energy consumption and thermal bridges. c) comparing the energy consumption data of the passive house building in operation with the simulated or designed energy consumption data, and then d) finding out the differences between the two sets of data, through analyzing the reasons to achieve the purpose of improving and upgrading the energy efficiency of the building. Firstly, 3 years of operational data of the passive house public building built in 2016 were analyzed. The building system was commissioned through the data of high energy consumption in 2017. Then, the energy consumption data for the subsequent 2 years were significantly lower. It showed the importance of HVAC commissioning for large passive house public buildings. The analysis of the energy consumption data and indoor environment parameters for the subsequent 2 years revealed that the space heating demand was larger than the simulated value and the cooling demand matched the simulated value well. The building’s indoor environment was maintained within the set comfort range year-round. Secondly, a passive house residential building containing 36 apartments, which was completed in 2020, was selected for monitoring. This is the first time that a passive house residential building was monitored in China. During the monitoring period, a comprehensive comparison of the design and construction techniques between the passive house residential building and a neighbouring Green Building residential building revealed that the passive house residential building would significantly reduce space heating demand, and it was suggested that large-scale promotion of passive houses would be a beneficial way to achieve China's dual carbon goals. After the monitoring was completed, the analysis showed that the actual heating demand was higher than the predicted heating demand, and the primary energy consumption and indoor comfort met the passive house standards well. The reasons for the higher heating demand are 1) the occupancy rate of only 47% (17/36) in the first moving-in year and 2) initial wall moisture and user behavior. The applicability of Passive House standards in the cold climate zone and coastal region of northern China was proven in the selected two passive house buildings. The monitored results meet basically the passive house standards. Because of the user behavior and occupation rate, part of the indicators doesn’t meet expectations, however, the passive house building shows outstanding advantages in terms of energy-saving and indoor comfort, compared with other current Green Building Standards or other building energy-saving standards in China.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Innsbr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hofer, Thomas;

    Im heutigen Kontext hat das Thema Nachhaltigkeit eine große Bedeutung erlangt, die sich über verschiedene Bereiche und Disziplinen erstreckt. Auch in der Softwareentwicklung gewinnt das Thema der Nachhaltigkeit zunehmend an Bedeutung. Hierbei erfolgt eine Unterscheidung zwischen der wirtschaftlichen, ökologischen, technischen, sozialen und individuellen Dimension der Nachhaltigkeit, welche jeweils unterschiedliche Aspekte der Nachhaltigkeit adressieren. Während traditionelle Methoden der Softwareentwicklung bereits Ansätze und Rahmenbedingungen für die Schaffung nachhaltiger Softwaresysteme bieten, besteht im Kontext agiler Entwicklungspraktiken, die zu den am weitesten verbreiteten Vorgehensweisen zählen, noch ein Mangel an Ansätzen zur Einbeziehung von Nachhaltigkeitsaspekten. In der vorliegenden Arbeit steht daher die Integration von Nachhaltigkeitsaspekten in der agilen Softwareentwicklung im Mittelpunkt, um nachhaltige Softwaresysteme zu entwickeln. Es wird ein im Rahmen dieser Masterarbeit implementierter Software Prototyp präsentiert, der es Mitgliedern eines Scrum Teams ermöglicht, Auswirkungen von User Stories auf die fünf Nachhaltigkeitsdimensionen zu schätzen. Ziel des Prototyps ist es, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, damit Softwareprodukte entstehen können, die möglichst nachhaltig gestaltet sind. Zu Beginn dieser Arbeit wurde eine Literatursuche durchgeführt, um existierende Methoden und Techniken zur Implementierung von nachhaltigen Softwaresystemen im agilen Kontext zu identifizieren. Die Ergebnisse zeigen, dass die aktuelle Literatur nur begrenzte, überwiegend abstrakte Ansätze diskutiert. Die Evaluierung des Prototyps verdeutlicht, dass sich der Einsatz des Prototyps vor allem in den Scrum Events Product Backlog Refinement und Sprint Review eignet. Der Prototyp kann dazu beitragen, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, indem Diskussionen zum Thema Nachhaltigkeit angeregt werden und dadurch unterschiedliche Perspektiven und unbeachtete Aspekte zum Thema Nachhaltigkeit aufgezeigt werden können. Die Anwendung des Prototyps bringt im Kontext eines bereits zeitkritischen Ansatzes wie Scrum jedoch auch Herausforderungen mit sich, zu denen Zeit- und Kostenaspekte sowie potenzielle Motivationsprobleme innerhalb eines Scrum Teams zählen. In today's context, the topic of sustainability has gained great importance, which extends across different areas and disciplines. The topic of sustainability is also becoming increasingly important in software development. A distinction is made between the economic, environmental, technical, social and individual dimensions of sustainability, each of which addresses different aspects of sustainability. While traditional methods of software development already offer approaches and framework conditions for the creation of sustainable software systems, there is still a lack of approaches to include sustainability aspects in the context of agile development practices, which are among the most widespread approaches. The present work therefore focuses on the integration of sustainability aspects in agile software development in order to develop sustainable software systems. A software prototype implemented as part of this master's thesis is presented, which enables members of a scrum team to estimate the impact of user stories on the five sustainability dimensions. The goal of the prototype is to increase sustainability awareness within a Scrum team, so that software products can be created that are designed to be as sustainable as possible. At the beginning of this work, a literature search was carried out to identify existing methods and techniques for implementing sustainable software systems in an agile context. The results show that the current literature only discusses limited, mostly abstract approaches. The evaluation of the prototype clarifies that the use of the prototype is particularly suitable in the Scrum events product backlog refinement and sprint review. The prototype can contribute to stimulating discussions on the topic of sustainability and thereby different perspectives and unnoticed aspects of sustainability can be pointed out. However, using the prototype in the context of an already time-sensitive approach like Scrum also poses challenges, including time and cost considerations and potential motivation issues within a Scrum team.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JKU ePub
    Master thesis . 2023
    Data sources: JKU ePub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JKU ePub
      Master thesis . 2023
      Data sources: JKU ePub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hofer, Thomas;

    Im heutigen Kontext hat das Thema Nachhaltigkeit eine große Bedeutung erlangt, die sich über verschiedene Bereiche und Disziplinen erstreckt. Auch in der Softwareentwicklung gewinnt das Thema der Nachhaltigkeit zunehmend an Bedeutung. Hierbei erfolgt eine Unterscheidung zwischen der wirtschaftlichen, ökologischen, technischen, sozialen und individuellen Dimension der Nachhaltigkeit, welche jeweils unterschiedliche Aspekte der Nachhaltigkeit adressieren. Während traditionelle Methoden der Softwareentwicklung bereits Ansätze und Rahmenbedingungen für die Schaffung nachhaltiger Softwaresysteme bieten, besteht im Kontext agiler Entwicklungspraktiken, die zu den am weitesten verbreiteten Vorgehensweisen zählen, noch ein Mangel an Ansätzen zur Einbeziehung von Nachhaltigkeitsaspekten. In der vorliegenden Arbeit steht daher die Integration von Nachhaltigkeitsaspekten in der agilen Softwareentwicklung im Mittelpunkt, um nachhaltige Softwaresysteme zu entwickeln. Es wird ein im Rahmen dieser Masterarbeit implementierter Software Prototyp präsentiert, der es Mitgliedern eines Scrum Teams ermöglicht, Auswirkungen von User Stories auf die fünf Nachhaltigkeitsdimensionen zu schätzen. Ziel des Prototyps ist es, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, damit Softwareprodukte entstehen können, die möglichst nachhaltig gestaltet sind. Zu Beginn dieser Arbeit wurde eine Literatursuche durchgeführt, um existierende Methoden und Techniken zur Implementierung von nachhaltigen Softwaresystemen im agilen Kontext zu identifizieren. Die Ergebnisse zeigen, dass die aktuelle Literatur nur begrenzte, überwiegend abstrakte Ansätze diskutiert. Die Evaluierung des Prototyps verdeutlicht, dass sich der Einsatz des Prototyps vor allem in den Scrum Events Product Backlog Refinement und Sprint Review eignet. Der Prototyp kann dazu beitragen, das Nachhaltigkeitsbewusstsein innerhalb eines Scrum Teams zu steigern, indem Diskussionen zum Thema Nachhaltigkeit angeregt werden und dadurch unterschiedliche Perspektiven und unbeachtete Aspekte zum Thema Nachhaltigkeit aufgezeigt werden können. Die Anwendung des Prototyps bringt im Kontext eines bereits zeitkritischen Ansatzes wie Scrum jedoch auch Herausforderungen mit sich, zu denen Zeit- und Kostenaspekte sowie potenzielle Motivationsprobleme innerhalb eines Scrum Teams zählen. In today's context, the topic of sustainability has gained great importance, which extends across different areas and disciplines. The topic of sustainability is also becoming increasingly important in software development. A distinction is made between the economic, environmental, technical, social and individual dimensions of sustainability, each of which addresses different aspects of sustainability. While traditional methods of software development already offer approaches and framework conditions for the creation of sustainable software systems, there is still a lack of approaches to include sustainability aspects in the context of agile development practices, which are among the most widespread approaches. The present work therefore focuses on the integration of sustainability aspects in agile software development in order to develop sustainable software systems. A software prototype implemented as part of this master's thesis is presented, which enables members of a scrum team to estimate the impact of user stories on the five sustainability dimensions. The goal of the prototype is to increase sustainability awareness within a Scrum team, so that software products can be created that are designed to be as sustainable as possible. At the beginning of this work, a literature search was carried out to identify existing methods and techniques for implementing sustainable software systems in an agile context. The results show that the current literature only discusses limited, mostly abstract approaches. The evaluation of the prototype clarifies that the use of the prototype is particularly suitable in the Scrum events product backlog refinement and sprint review. The prototype can contribute to stimulating discussions on the topic of sustainability and thereby different perspectives and unnoticed aspects of sustainability can be pointed out. However, using the prototype in the context of an already time-sensitive approach like Scrum also poses challenges, including time and cost considerations and potential motivation issues within a Scrum team.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JKU ePub
    Master thesis . 2023
    Data sources: JKU ePub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JKU ePubarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JKU ePub
      Master thesis . 2023
      Data sources: JKU ePub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; +1 Authors

    This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48440/gf...
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48440/gf...
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Bregnard, Danaé; Leins, Alessio; Vieth-Hillebrand, Andrea; Regenspurg, Simona; +1 Authors

    This deliverable contains the raw data that constitutes the database of microbial diversity and organic compounds in geothermal fluids used for electricity production generated during the project.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.48440/gf...
    Project deliverable . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.48440/gf...
      Project deliverable . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Karyotakis, Konstantinos-Ektor; Mongellaz, Rémi; Lidberg, Mathias R;

    The main contribution of this paper lies in the development of a novel front-to-rear axle brake force distribution strategy for the regenerative braking control of a vehicle with a high-speed electric drive unit at the front axle. The strategy adapts the brake proportioning to provide extended room for energy recuperation of the electric motor when the vehicle drivability and safety requirements permit. In detail, the strategy is adaptive to cornering intensity enabling the range to be further extended in real-world applications. The regenerative braking control features a brake blending control algorithm and a powertrain controller, which are decisive for enhancing the braking performance. Lastly, the regenerative braking control is implemented in the highfidelity simulation environment Simcenter Amesim, where system efficiency and regenerative brake performance are analysed. Results confirm that the designed regenerative braking greatly improves the effectiveness of energy recuperation for a front-wheel driven electric vehicle with a high-speed drive at the front axle. In conclusion, it is shown that it is feasible to use the high-speed drive with the proposed control design for regenerative braking.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Article . 2021
    Data sources: Chalmers Research
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Preprint . 2021
    Data sources: Chalmers Research
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Article . 2021
      Data sources: Chalmers Research
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Preprint . 2021
      Data sources: Chalmers Research
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Karyotakis, Konstantinos-Ektor; Mongellaz, Rémi; Lidberg, Mathias R;

    The main contribution of this paper lies in the development of a novel front-to-rear axle brake force distribution strategy for the regenerative braking control of a vehicle with a high-speed electric drive unit at the front axle. The strategy adapts the brake proportioning to provide extended room for energy recuperation of the electric motor when the vehicle drivability and safety requirements permit. In detail, the strategy is adaptive to cornering intensity enabling the range to be further extended in real-world applications. The regenerative braking control features a brake blending control algorithm and a powertrain controller, which are decisive for enhancing the braking performance. Lastly, the regenerative braking control is implemented in the highfidelity simulation environment Simcenter Amesim, where system efficiency and regenerative brake performance are analysed. Results confirm that the designed regenerative braking greatly improves the effectiveness of energy recuperation for a front-wheel driven electric vehicle with a high-speed drive at the front axle. In conclusion, it is shown that it is feasible to use the high-speed drive with the proposed control design for regenerative braking.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Article . 2021
    Data sources: Chalmers Research
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chalmers Research
    Preprint . 2021
    Data sources: Chalmers Research
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chalmers Researcharrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Article . 2021
      Data sources: Chalmers Research
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chalmers Research
      Preprint . 2021
      Data sources: Chalmers Research
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This presentation was part of the EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures (September 16 & 17, 2021, hybrid event in Amsterdam and online).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    This presentation was part of the EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures (September 16 & 17, 2021, hybrid event in Amsterdam and online).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Presentation . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2021
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Presentation . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2021
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph