- home
- Advanced Search
- Energy Research
- 15. Life on land
- PL
- AT
- Energy Research
- 15. Life on land
- PL
- AT
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Maus, Victor; da Silva, Dieison M; Gutschlhofer, Jakob; da Rosa, Robson; Giljum, Stefan; Gass, Sidnei L B; Luckeneder, Sebastian; Lieber, Mirko; McCallum, Ian;This dataset updates the global-scale mining polygons (Version 1) available from https://doi.org/10.1594/PANGAEA.910894. It contains 44,929 polygon features, covering 101,583 km² of land used by the global mining industry, including large-scale and artisanal and small-scale mining. The polygons cover all ground features related to mining, .e.g open cuts, tailing dams, waste rock dumps, water ponds, processing infrastructure, and other land cover types related to the mining activities. The data was derived using a similar methodology as the first version by visual interpretation of satellite images. The study area was limited to a 10 km buffer around the 34,820 mining coordinates reported in the S&P metals and mining database. We digitalized the mining areas using the 2019 Sentinel-2 cloudless mosaic with 10 m spatial resolution (https://s2maps.eu by EOX IT Services GmbH - Contains modified Copernicus Sentinel data 2019). We also consulted Google Satellite and Microsoft Bing Imagery, but only as additional information to help identify land cover types linked to the mining activities. The main data set consists of a GeoPackage (GPKG) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, FID with the feature ID, and geom in geographical coordinates WGS84. The summary of the mining area per country is available in comma-separated values (CSV) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, and N_FEATURES number of mapped features. Grid data sets with the mining area per cell were derived from the polygons. The grid data is available at 30 arc-second resolution (approximately 1x1 km at the equator), 5 arc-minute (approximately 10x10 km at the equator), and 30 arc-minute resolution (approximately 55x55 km at the equator). We performed an independent validation of the mining data set using control points. For that, we draw 1,000 random samples stratified between two classes: mine and no-mine. The control points are also available as a GPKG file, including the variables: MAPPED, REFERENCE, FID with the feature ID, and geom in geographical coordinates WGS84. The overall accuracy calculated from the control points was 88.3%, Kappa 0.77, F1 score 0.87, producer's accuracy of class mine 78.9 % and user's accuracy of class mine 97.2 %.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Moesinger, Leander; Dorigo, Wouter; De Jeu, Richard; Van der Schalie, Robin; Scanlon, Tracy; Teubner, Irene; Forkel, Matthias;Related paper containing detailed description: Moesinger et al. (2020) Vegetation optical depth (VOD) describes the attenuation of radiation by plants. VOD a function of frequency as well as vegetation water content, and by extension biomass. VOD has many possible applications in studies of the biosphere, such as biomass monitoring, drought monitoring, phenology analyzes or fire risk management. We merged VOD observations from various spaceborne sensors (SSM/I, TMI, AMSR-E, AMSR2, WindSat) to create global long-term vod time series. Prior to aggregation the data has been rescaled to AMSR-E, removing systematic differences between them. There is a product for C-band (~6.9 GHz, 2002 - 2018), X-band (10.7 GHz, 1997 - 2018) and Ku-band (~19 GHz, 1987 - 2017). The data is global sampled on a regular 0.25 degrees grid. Each product is available as daily global netcdf4 files. Currently there is an issue with opening the file using ESA SNAP. As an alternative Panoply can be used to quickly visualize the data. An update of VODCA, addressing this issue and potentially including an extension of the dataset, is foreseen to be published on Zenodo early 2020. Please contact us if you have any questions, problems or suggestions for improvement! Files: "VODCA_C-band_2002-2018_v01.0.0.zip" (unzipped size: ~140 GB): VODCA C-band files, sorted into yearly folders "VODCA_X-band_1997-2018_v01.0.0.zip" (unzipped size: ~180 GB): VODCA X-band files, sorted into yearly folders "VODCA_Ku-band_1987-2017_v01.0.0.zip" (unzipped size: ~270 GB) : VODCA Ku-band files, sorted into yearly folders "vodca_v01-0_K-band_2007-06-01.nc" sample file of the Ku-band product "ESA-CCI-SOILMOISTURE-LAND_AND_RAINFOREST_MASK-fv04.2.nc" Contains a global land mask, VODCA only has data for land locations. Source: https://github.com/TUW-GEO/smecv-grid Variables of data in VODCA files: "VOD": Unitless, Vegetation Optical Depth of the respective band "sensor_flag": Bit-flag indicating which sensors contributed to each observation. Values: 1 = AMSR-E 2 = AMSR2 3 = SSM/I F8 4 = SSM/I F11 5 = SSM/I F13 6 = TMI 7 = WindSat "processing_flag": Bit-flag indicating irregularities during processing affecting the quality of the observations Values: 0 = Everything is fine 10 = AMSR-2 7.3 GHz band is used instead of 6.9 GHz 11 = Sensor is scaled to matched TMI instead of AMSR-E 12 = Sensor scaled without temporally overlapping observations "time"/"lon"/"lat": Dimensions of the data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2575598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
visibility 9Kvisibility views 8,908 download downloads 12,641 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2575598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Frédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 16 Jun 2020Publisher:Dryad Funded by:EC | SOS.aquaterra, AKA | Global Water Scarcity Atl..., SNSF | Mountain water resources ... +1 projectsEC| SOS.aquaterra ,AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,SNSF| Mountain water resources under climate change: A comprehensive highland-lowland assessment ,AKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART)Viviroli, Daniel; Kummu, Matti; Meybeck, Michel; Kallio, Marko; Wada, Yoshihide;Water resources index W quantifies the potential dependence of the world's lowland areas on water resources originating in mountain areas upstream. The data cover the timeframe from the 1960s (1961–1970) to the 2040s (2041–2050) in decadal steps. Data for projections from the 2010s onwards are available for three scenario pathways (SSP1-RCP4.5, SSP2-RCP6.0, SSP3-RCP6.0) and show median results from 5 CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1‑M). The files are GeoTIFF formatted and in a regular raster of 5’×5’ (arc minutes in WGS 1984 coordinate system) The values of W can be classified using the following ranges: W ≤ -2 → Essential but vastly insufficient -2 < W < -1 → Essential but insufficient -1 ≤ W < 0 → Essential and sufficient W = 0 → No surplus from mountains 0 < W ≤ 1 → Supportive 1 < W < 2 → Minor W ≥ 2 → Negligible The values of W are rounded to four decimal places and limited to a range of -1110 to 9998. Values falling outside of that range are set to the nearest limit. he following flag values apply to W: -5555 indicates that there is no water balance surplus from the mountain area upstream, but a lowland water balance surplus; -6666 indicates that there is no water balance surplus from the mountain area upstream, and a lowland water balance deficit. Mountain areas and oceans are NODATA, large ice shields are omitted (Greenland: NODATA, Antarctica: not covered in extent). Mountain areas provide disproportionally high runoff in many parts of the world, and here we quantify for the first time their importance for water resources and food production from the viewpoint of the lowland areas downstream. The dataset maps the degree to which lowland areas potentially depend on runoff contributions from mountain areas (39% of land mass) between the 1960s and the 2040s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ns1rn8pnt&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ns1rn8pnt&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United Kingdom, United StatesPublisher:Springer Science and Business Media LLC A. Park Williams; A. Park Williams; Chris Funk; Chris Funk; Marcin Koprowski; Iain Robertson; Neil J. Loader; Joel Michaelsen; Tommy H. G. Wils; Zewdu Eshetu; Sara A. Rauscher;We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s–1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Franco Magurno; Damian Chmura; Zofia Piotrowska-Seget; Monika Malicka;pmid: 32058165
Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2020.110299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2020.110299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Harald Ginzky; Oliver C. Ruppel;Although soils provide social and ecological services which are of a clearly transnational dimension, the management of soils needs to be addressed locally. Thus, an appropriate - or better, effective governance for sustainable soil management at national level is essential. This chapter provides some fundamental recommendations for an effective governance based on legal studies from several African countries, namely Cameroon, Kenya and Zambia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soisec.2021.100032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soisec.2021.100032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAnna B. Harper; Peter M. Cox; Pierre Friedlingstein; Andy J. Wiltshire; Chris D. Jones; Stephen Sitch; Lina M. Mercado; Margriet Groenendijk; Eddy Robertson; Jens Kattge; Gerhard Bönisch; Owen K. Atkin; Michael Bahn; Johannes Cornelissen; Ülo Niinemets; Vladimir Onipchenko; Josep Peñuelas; Lourens Poorter; Peter B. Reich; Nadjeda A. Soudzilovskaia; Peter van Bodegom;Abstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Maus, Victor; da Silva, Dieison M; Gutschlhofer, Jakob; da Rosa, Robson; Giljum, Stefan; Gass, Sidnei L B; Luckeneder, Sebastian; Lieber, Mirko; McCallum, Ian;This dataset updates the global-scale mining polygons (Version 1) available from https://doi.org/10.1594/PANGAEA.910894. It contains 44,929 polygon features, covering 101,583 km² of land used by the global mining industry, including large-scale and artisanal and small-scale mining. The polygons cover all ground features related to mining, .e.g open cuts, tailing dams, waste rock dumps, water ponds, processing infrastructure, and other land cover types related to the mining activities. The data was derived using a similar methodology as the first version by visual interpretation of satellite images. The study area was limited to a 10 km buffer around the 34,820 mining coordinates reported in the S&P metals and mining database. We digitalized the mining areas using the 2019 Sentinel-2 cloudless mosaic with 10 m spatial resolution (https://s2maps.eu by EOX IT Services GmbH - Contains modified Copernicus Sentinel data 2019). We also consulted Google Satellite and Microsoft Bing Imagery, but only as additional information to help identify land cover types linked to the mining activities. The main data set consists of a GeoPackage (GPKG) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, FID with the feature ID, and geom in geographical coordinates WGS84. The summary of the mining area per country is available in comma-separated values (CSV) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, and N_FEATURES number of mapped features. Grid data sets with the mining area per cell were derived from the polygons. The grid data is available at 30 arc-second resolution (approximately 1x1 km at the equator), 5 arc-minute (approximately 10x10 km at the equator), and 30 arc-minute resolution (approximately 55x55 km at the equator). We performed an independent validation of the mining data set using control points. For that, we draw 1,000 random samples stratified between two classes: mine and no-mine. The control points are also available as a GPKG file, including the variables: MAPPED, REFERENCE, FID with the feature ID, and geom in geographical coordinates WGS84. The overall accuracy calculated from the control points was 88.3%, Kappa 0.77, F1 score 0.87, producer's accuracy of class mine 78.9 % and user's accuracy of class mine 97.2 %.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Moesinger, Leander; Dorigo, Wouter; De Jeu, Richard; Van der Schalie, Robin; Scanlon, Tracy; Teubner, Irene; Forkel, Matthias;Related paper containing detailed description: Moesinger et al. (2020) Vegetation optical depth (VOD) describes the attenuation of radiation by plants. VOD a function of frequency as well as vegetation water content, and by extension biomass. VOD has many possible applications in studies of the biosphere, such as biomass monitoring, drought monitoring, phenology analyzes or fire risk management. We merged VOD observations from various spaceborne sensors (SSM/I, TMI, AMSR-E, AMSR2, WindSat) to create global long-term vod time series. Prior to aggregation the data has been rescaled to AMSR-E, removing systematic differences between them. There is a product for C-band (~6.9 GHz, 2002 - 2018), X-band (10.7 GHz, 1997 - 2018) and Ku-band (~19 GHz, 1987 - 2017). The data is global sampled on a regular 0.25 degrees grid. Each product is available as daily global netcdf4 files. Currently there is an issue with opening the file using ESA SNAP. As an alternative Panoply can be used to quickly visualize the data. An update of VODCA, addressing this issue and potentially including an extension of the dataset, is foreseen to be published on Zenodo early 2020. Please contact us if you have any questions, problems or suggestions for improvement! Files: "VODCA_C-band_2002-2018_v01.0.0.zip" (unzipped size: ~140 GB): VODCA C-band files, sorted into yearly folders "VODCA_X-band_1997-2018_v01.0.0.zip" (unzipped size: ~180 GB): VODCA X-band files, sorted into yearly folders "VODCA_Ku-band_1987-2017_v01.0.0.zip" (unzipped size: ~270 GB) : VODCA Ku-band files, sorted into yearly folders "vodca_v01-0_K-band_2007-06-01.nc" sample file of the Ku-band product "ESA-CCI-SOILMOISTURE-LAND_AND_RAINFOREST_MASK-fv04.2.nc" Contains a global land mask, VODCA only has data for land locations. Source: https://github.com/TUW-GEO/smecv-grid Variables of data in VODCA files: "VOD": Unitless, Vegetation Optical Depth of the respective band "sensor_flag": Bit-flag indicating which sensors contributed to each observation. Values: 1 = AMSR-E 2 = AMSR2 3 = SSM/I F8 4 = SSM/I F11 5 = SSM/I F13 6 = TMI 7 = WindSat "processing_flag": Bit-flag indicating irregularities during processing affecting the quality of the observations Values: 0 = Everything is fine 10 = AMSR-2 7.3 GHz band is used instead of 6.9 GHz 11 = Sensor is scaled to matched TMI instead of AMSR-E 12 = Sensor scaled without temporally overlapping observations "time"/"lon"/"lat": Dimensions of the data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2575598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
visibility 9Kvisibility views 8,908 download downloads 12,641 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2575598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Frédéric Chevallier; Pierre Regnier; Julia Pongratz; Atul K. Jain; Roxana Petrescu; Robert J. Scholes; Pep Canadell; Masayuki Kondo; Hui Yang; Marielle Saunois; Bo Zheng; Wouter Peters; Wouter Peters; Benjamin Poulter; Benjamin Poulter; Benjamin Poulter; Matthew W. Jones; Hanqin Tian; Xuhui Wang; Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald; Ingrid T. Luijkx; Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow; Chunjing Qiu; Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais; Ana Bastos;Abstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 16 Jun 2020Publisher:Dryad Funded by:EC | SOS.aquaterra, AKA | Global Water Scarcity Atl..., SNSF | Mountain water resources ... +1 projectsEC| SOS.aquaterra ,AKA| Global Water Scarcity Atlas: understanding resource pressure, causes, consequences, and opportunities (WASCO) ,SNSF| Mountain water resources under climate change: A comprehensive highland-lowland assessment ,AKA| Global green-blue water scarcity trajectories and measures for adaptation: linking the Holocene to the Anthropocene (SCART)Viviroli, Daniel; Kummu, Matti; Meybeck, Michel; Kallio, Marko; Wada, Yoshihide;Water resources index W quantifies the potential dependence of the world's lowland areas on water resources originating in mountain areas upstream. The data cover the timeframe from the 1960s (1961–1970) to the 2040s (2041–2050) in decadal steps. Data for projections from the 2010s onwards are available for three scenario pathways (SSP1-RCP4.5, SSP2-RCP6.0, SSP3-RCP6.0) and show median results from 5 CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1‑M). The files are GeoTIFF formatted and in a regular raster of 5’×5’ (arc minutes in WGS 1984 coordinate system) The values of W can be classified using the following ranges: W ≤ -2 → Essential but vastly insufficient -2 < W < -1 → Essential but insufficient -1 ≤ W < 0 → Essential and sufficient W = 0 → No surplus from mountains 0 < W ≤ 1 → Supportive 1 < W < 2 → Minor W ≥ 2 → Negligible The values of W are rounded to four decimal places and limited to a range of -1110 to 9998. Values falling outside of that range are set to the nearest limit. he following flag values apply to W: -5555 indicates that there is no water balance surplus from the mountain area upstream, but a lowland water balance surplus; -6666 indicates that there is no water balance surplus from the mountain area upstream, and a lowland water balance deficit. Mountain areas and oceans are NODATA, large ice shields are omitted (Greenland: NODATA, Antarctica: not covered in extent). Mountain areas provide disproportionally high runoff in many parts of the world, and here we quantify for the first time their importance for water resources and food production from the viewpoint of the lowland areas downstream. The dataset maps the degree to which lowland areas potentially depend on runoff contributions from mountain areas (39% of land mass) between the 1960s and the 2040s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ns1rn8pnt&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 25visibility views 25 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.ns1rn8pnt&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United Kingdom, United StatesPublisher:Springer Science and Business Media LLC A. Park Williams; A. Park Williams; Chris Funk; Chris Funk; Marcin Koprowski; Iain Robertson; Neil J. Loader; Joel Michaelsen; Tommy H. G. Wils; Zewdu Eshetu; Sara A. Rauscher;We utilize a variety of climate datasets to examine impacts of two mechanisms on precipitation in the Greater Horn of Africa (GHA) during northern-hemisphere summer. First, surface-pressure gradients draw moist air toward the GHA from the tropical Atlantic Ocean and Congo Basin. Variability of the strength of these gradients strongly influences GHA precipitation totals and accounts for important phenomena such as the 1960s–1980s rainfall decline and devastating 1984 drought. Following the 1980s, precipitation variability became increasingly influenced by the southern tropical Indian Ocean (STIO) region. Within this region, increases in sea-surface temperature, evaporation, and precipitation are linked with increased exports of dry mid-tropospheric air from the STIO region toward the GHA. Convergence of dry air above the GHA reduces local convection and precipitation. It also produces a clockwise circulation response near the ground that reduces moisture transports from the Congo Basin. Because precipitation originating in the Congo Basin has a unique isotopic signature, records of moisture transports from the Congo Basin may be preserved in the isotopic composition of annual tree rings in the Ethiopian Highlands. A negative trend in tree-ring oxygen-18 during the past half century suggests a decline in the proportion of precipitation originating from the Congo Basin. This trend may not be part of a natural cycle that will soon rebound because climate models characterize Indian Ocean warming as a principal signature of greenhouse-gas induced climate change. We therefore expect surface warming in the STIO region to continue to negatively impact GHA precipitation during northern-hemisphere summer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 138 citations 138 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-011-1222-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Franco Magurno; Damian Chmura; Zofia Piotrowska-Seget; Monika Malicka;pmid: 32058165
Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2020.110299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2020.110299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Harald Ginzky; Oliver C. Ruppel;Although soils provide social and ecological services which are of a clearly transnational dimension, the management of soils needs to be addressed locally. Thus, an appropriate - or better, effective governance for sustainable soil management at national level is essential. This chapter provides some fundamental recommendations for an effective governance based on legal studies from several African countries, namely Cameroon, Kenya and Zambia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soisec.2021.100032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soisec.2021.100032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAnna B. Harper; Peter M. Cox; Pierre Friedlingstein; Andy J. Wiltshire; Chris D. Jones; Stephen Sitch; Lina M. Mercado; Margriet Groenendijk; Eddy Robertson; Jens Kattge; Gerhard Bönisch; Owen K. Atkin; Michael Bahn; Johannes Cornelissen; Ülo Niinemets; Vladimir Onipchenko; Josep Peñuelas; Lourens Poorter; Peter B. Reich; Nadjeda A. Soudzilovskaia; Peter van Bodegom;Abstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu