- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- GB
- PL
- KG
- Energy Research
- Open Access
- Restricted
- Open Source
- GB
- PL
- KG
description Publicationkeyboard_double_arrow_right Conference object 2006 United KingdomAuthors: Gavin, Bunting;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1590::668d33907c79b19dc4b1d9932ab59a77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1590::668d33907c79b19dc4b1d9932ab59a77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2006 United KingdomAuthors: Gavin, Bunting;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1590::668d33907c79b19dc4b1d9932ab59a77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1590::668d33907c79b19dc4b1d9932ab59a77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Authors:Lucy Allington;
Lucy Allington
Lucy Allington in OpenAIRECarla Cannone;
Carla Cannone
Carla Cannone in OpenAIREIoannis Pappis;
Ioannis Pappis
Ioannis Pappis in OpenAIREKarla Cervantes Barron;
+17 AuthorsKarla Cervantes Barron
Karla Cervantes Barron in OpenAIRELucy Allington;
Lucy Allington
Lucy Allington in OpenAIRECarla Cannone;
Carla Cannone
Carla Cannone in OpenAIREIoannis Pappis;
Ioannis Pappis
Ioannis Pappis in OpenAIREKarla Cervantes Barron;
Karla Cervantes Barron
Karla Cervantes Barron in OpenAIREWill Usher;
Will Usher
Will Usher in OpenAIRESteve Pye;
Steve Pye
Steve Pye in OpenAIREEdward Brown;
Edward Brown
Edward Brown in OpenAIREMark Howells;
Mark Howells
Mark Howells in OpenAIREConstantinos Taliotis;
Caroline Sundin;Constantinos Taliotis
Constantinos Taliotis in OpenAIREVignesh Sridha;
Vignesh Sridha
Vignesh Sridha in OpenAIREEunice Ramos;
Eunice Ramos
Eunice Ramos in OpenAIREMaarten Brinkerink;
Maarten Brinkerink
Maarten Brinkerink in OpenAIREPaul Deane;
Andrii Gritsevskyi; Gustavo Moura; Arnaud Rouget; David Wogan; Edito Barcelona;Paul Deane
Paul Deane in OpenAIREHolger Rogner;
Holger Rogner
Holger Rogner in OpenAIREStephanie Hirmer;
Stephanie Hirmer
Stephanie Hirmer in OpenAIREAbstract Energy system modelling can be used to assess the implications of different scenarios and support improved policymaking. However, access to data is often a barrier to starting energy system modelling in developing countries, thereby causing delays. This article therefore provides data that can be used to create a simple zero order energy system model for Mauritania, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organizations, journal articles, and existing modelling studies. This means that the dataset can be easily updated based on the latest available information or more detailed and accurate local data. These data were also used to calibrate a simple energy system model using the Open Source Energy Modelling System (OSeMOSYS) and two stylized scenarios (Fossil Future and Least Cost ) for 2020-2050. The assumptions used and results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-479591/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-479591/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Authors:Lucy Allington;
Lucy Allington
Lucy Allington in OpenAIRECarla Cannone;
Carla Cannone
Carla Cannone in OpenAIREIoannis Pappis;
Ioannis Pappis
Ioannis Pappis in OpenAIREKarla Cervantes Barron;
+17 AuthorsKarla Cervantes Barron
Karla Cervantes Barron in OpenAIRELucy Allington;
Lucy Allington
Lucy Allington in OpenAIRECarla Cannone;
Carla Cannone
Carla Cannone in OpenAIREIoannis Pappis;
Ioannis Pappis
Ioannis Pappis in OpenAIREKarla Cervantes Barron;
Karla Cervantes Barron
Karla Cervantes Barron in OpenAIREWill Usher;
Will Usher
Will Usher in OpenAIRESteve Pye;
Steve Pye
Steve Pye in OpenAIREEdward Brown;
Edward Brown
Edward Brown in OpenAIREMark Howells;
Mark Howells
Mark Howells in OpenAIREConstantinos Taliotis;
Caroline Sundin;Constantinos Taliotis
Constantinos Taliotis in OpenAIREVignesh Sridha;
Vignesh Sridha
Vignesh Sridha in OpenAIREEunice Ramos;
Eunice Ramos
Eunice Ramos in OpenAIREMaarten Brinkerink;
Maarten Brinkerink
Maarten Brinkerink in OpenAIREPaul Deane;
Andrii Gritsevskyi; Gustavo Moura; Arnaud Rouget; David Wogan; Edito Barcelona;Paul Deane
Paul Deane in OpenAIREHolger Rogner;
Holger Rogner
Holger Rogner in OpenAIREStephanie Hirmer;
Stephanie Hirmer
Stephanie Hirmer in OpenAIREAbstract Energy system modelling can be used to assess the implications of different scenarios and support improved policymaking. However, access to data is often a barrier to starting energy system modelling in developing countries, thereby causing delays. This article therefore provides data that can be used to create a simple zero order energy system model for Mauritania, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organizations, journal articles, and existing modelling studies. This means that the dataset can be easily updated based on the latest available information or more detailed and accurate local data. These data were also used to calibrate a simple energy system model using the Open Source Energy Modelling System (OSeMOSYS) and two stylized scenarios (Fossil Future and Least Cost ) for 2020-2050. The assumptions used and results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-479591/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-479591/v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors:M.K. Abohamer;
J. Awrejcewicz;M.K. Abohamer
M.K. Abohamer in OpenAIRET.S. Amer;
T.S. Amer
T.S. Amer in OpenAIREThis paper studies the vibrational motion of a dynamical system connected to an electromagnetic device, which is one of the energy harvesting (EH) devices that transform the vibrational motion into electric energy. This system has three degrees-of-freedom (DOF) and consists of two linked parts attached together; one is a nonlinear Duffing oscillator, and the other is a nonlinear damping spring pendulum. The regulating equations of motion (EOM) are achieved utilizing Lagrange’s equations and solved analytically applying the approach of multiple scales (AMS) till the third order of approximation. The accuracy of the attained solutions has been examined by comparing them with the numerical ones of the EOM. The time histories of the solutions and the nonlinear stability analysis of the modulation equations are represented graphically in various plots. The Poincaré maps and phase portraits diagrams displayed the stable behavior of the studied dynamical system. In addition, the different ranges of the stabilities are examined and discussed. In the electromagnetic device, the output power and current time series are depicted as a function of different values of the damping coefficients, excitation amplitudes, and load resistance. It is noted that the output current and power are dropped when the damping coefficient is raised. On the other hand, the increment of the excitation has a positive effect on the electrical generation and produces increment of the output power and current. Furthermore, the output power grows when the total resistance increases to accommodate the applied load. The EH device generates high output current and power at low-frequency values. The significance of this work is limited to the numerous uses of its outcomes in everyday life, such as powering medical devices, serving as a power supply for sensors, and serving as a backup energy source for some electronic devices.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors:M.K. Abohamer;
J. Awrejcewicz;M.K. Abohamer
M.K. Abohamer in OpenAIRET.S. Amer;
T.S. Amer
T.S. Amer in OpenAIREThis paper studies the vibrational motion of a dynamical system connected to an electromagnetic device, which is one of the energy harvesting (EH) devices that transform the vibrational motion into electric energy. This system has three degrees-of-freedom (DOF) and consists of two linked parts attached together; one is a nonlinear Duffing oscillator, and the other is a nonlinear damping spring pendulum. The regulating equations of motion (EOM) are achieved utilizing Lagrange’s equations and solved analytically applying the approach of multiple scales (AMS) till the third order of approximation. The accuracy of the attained solutions has been examined by comparing them with the numerical ones of the EOM. The time histories of the solutions and the nonlinear stability analysis of the modulation equations are represented graphically in various plots. The Poincaré maps and phase portraits diagrams displayed the stable behavior of the studied dynamical system. In addition, the different ranges of the stabilities are examined and discussed. In the electromagnetic device, the output power and current time series are depicted as a function of different values of the damping coefficients, excitation amplitudes, and load resistance. It is noted that the output current and power are dropped when the damping coefficient is raised. On the other hand, the increment of the excitation has a positive effect on the electrical generation and produces increment of the output power and current. Furthermore, the output power grows when the total resistance increases to accommodate the applied load. The EH device generates high output current and power at low-frequency values. The significance of this work is limited to the numerous uses of its outcomes in everyday life, such as powering medical devices, serving as a power supply for sensors, and serving as a backup energy source for some electronic devices.
Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Alexandria Engineeri... arrow_drop_down Alexandria Engineering JournalArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aej.2022.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2012Embargo end date: 01 Jan 2012 Italy, France, Spain, Italy, France, Italy, France, Italy, Netherlands, United Kingdom, Spain, Italy, Italy, Italy, Spain, United Kingdom, Italy, Switzerland, Spain, France, United Kingdom, United Kingdom, United Kingdom, France, France, Italy, Spain, Netherlands, France, France, France, Italy, Netherlands, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Search for New Physics in..., SNSF | High Precision CP Violati..., SNSF | Particle Physics in the L...SNSF| Search for New Physics in Electroweak Penguin Transitions at LHCb ,SNSF| High Precision CP Violation Physics at LHCb ,SNSF| Particle Physics in the LHC EraAlexey Novoselov; J. Magnin; V. N. La Thi; Naylya Sagidova; Antonio Falabella; Albert Bursche; M. Matveev;Evelina Gersabeck;
Evelina Gersabeck
Evelina Gersabeck in OpenAIREV. Tisserand;
Maximilian Schlupp;V. Tisserand
V. Tisserand in OpenAIREC. Potterat;
C. Potterat
C. Potterat in OpenAIRECristina Lazzeroni;
U. Kerzel; Marie Helene Schune; B. Schmidt;Cristina Lazzeroni
Cristina Lazzeroni in OpenAIREC. J. Parkinson;
C. J. Parkinson
C. J. Parkinson in OpenAIREB. Sciascia;
F. Xing; G. N. Patrick; Massimiliano Ferro-Luzzi;B. Sciascia
B. Sciascia in OpenAIRER. Vazquez Gomez;
P. M. Bjørnstad; O. Francisco; J. Dickens; B. Pietrzyk; Jessica Prisciandaro; J. Buytaert; Nazim Hussain; Marcin Kucharczyk; Marcin Kucharczyk; Marcin Kucharczyk;R. Vazquez Gomez
R. Vazquez Gomez in OpenAIRET. E. Latham;
I. R. Kenyon; H. Ruiz;T. E. Latham
T. E. Latham in OpenAIRED. Souza;
F. Eisele; Th. S. Bauer; E. van Herwijnen; A. Bates; N. A. Smith; R. Silva Coutinho; Marc-Olivier Bettler; Alessia Satta; J. Anderson; Leonid Kravchuk; C. D'Ambrosio; D. Savrina; J. Panman;D. Souza
D. Souza in OpenAIREManuel Schiller;
Z. Mathe; Alexey Zhelezov;Manuel Schiller
Manuel Schiller in OpenAIREE. Grauges;
Timothy Gershon; Timothy Gershon; S. C. Haines; David Ward;E. Grauges
E. Grauges in OpenAIREA. Puig Navarro;
D. Wiedner; T. Huse; K. Hennessy; P. Rodriguez Perez; Andrey Vorobyev; Po-Hsun Chen; Po-Hsun Chen;A. Puig Navarro
A. Puig Navarro in OpenAIREEvgeny Gushchin;
Jack Benton; Sebastian Bachmann; R. S. Huston; H. Dijkstra; A. D. Nguyen; Gregory Ciezarek; N. Chiapolini; A. Borgia;Evgeny Gushchin
Evgeny Gushchin in OpenAIREAdriano Lai;
S. Eidelman; Ronan McNulty; Daniel Lacarrere; J. Rouvinet; Krzysztof Grzegorz Sobczak; Minh Tâm Tran; A. D. Webber;Adriano Lai
Adriano Lai in OpenAIRET. Lesiak;
Y.Y. Li;T. Lesiak
T. Lesiak in OpenAIREMikhail Zavertyaev;
Ph. Charpentier; Ronan Wallace;Mikhail Zavertyaev
Mikhail Zavertyaev in OpenAIREGiulia Manca;
Marcin Chrzaszcz; P. Diniz Batista; Dmitry Popov; C. Voß;Giulia Manca
Giulia Manca in OpenAIREV. V. Gligorov;
V. V. Gligorov
V. V. Gligorov in OpenAIREIvan Belyaev;
Ivan Belyaev
Ivan Belyaev in OpenAIREAndrey Golutvin;
Andrey Golutvin; Andrey Golutvin; W. Witzeling;Andrey Golutvin
Andrey Golutvin in OpenAIREAlessandro Petrolini;
Alessandro Petrolini
Alessandro Petrolini in OpenAIREJ. van Tilburg;
Thomas Blake;J. van Tilburg
J. van Tilburg in OpenAIREA. Nomerotski;
A. Nomerotski;A. Nomerotski
A. Nomerotski in OpenAIRER. Lefèvre;
V.G. Shevchenko; Jing Wang; Robert Currie;R. Lefèvre
R. Lefèvre in OpenAIRES. Roiser;
Rustem Dzhelyadin; Edwige Tournefier; Edwige Tournefier; K. De Bruyn; A. Gomes; Giacomo Graziani; A. Richards; Marc S. Williams;S. Roiser
S. Roiser in OpenAIREPatrick Owen;
A. Palano; Piotr Morawski; J. P. Lees; P. Shatalov; T. Brambach;Patrick Owen
Patrick Owen in OpenAIREM. Seco;
Nikolay Bondar; Marco Clemencic; K. Ciba; E. Lanciotti; Iurii Raniuk; P. Henrard;G. Raven;
C. Langenbruch; V. Fave; Andrew Cook; G. D. Patel; Miriam Gandelman; S. Belogurov; Harry Cliff; Sandra Amato; David Websdale; F. Dupertuis; O. Kochebina;G. Raven
G. Raven in OpenAIREV. A. Kudryavtsev;
Neville Harnew; E. Ben-Haim;V. A. Kudryavtsev
V. A. Kudryavtsev in OpenAIREOlaf Steinkamp;
Oleg Yushchenko; Haonan Lu; Chung Nguyen-Mau; A. Camboni; Oliver Grünberg; Ilya Komarov; J. A. Hernando Morata;Olaf Steinkamp
Olaf Steinkamp in OpenAIRERoberta Santacesaria;
Carla Göbel;Roberta Santacesaria
Roberta Santacesaria in OpenAIREFrancesca Dordei;
Francesca Dordei
Francesca Dordei in OpenAIREDaniel Charles Craik;
Daniel Charles Craik
Daniel Charles Craik in OpenAIREJ. J. Saborido Silva;
J. J. Saborido Silva
J. J. Saborido Silva in OpenAIRED. A. Milanes;
S. Schleich; A. Sparkes; Rolf Lindner; Vitaly Vorobyev; T. M. Karbach; A. Dosil Suárez; Hamish Gordon; M. Whitehead;D. A. Milanes
D. A. Milanes in OpenAIREGiampiero Mancinelli;
L. A. Granado Cardoso;Giampiero Mancinelli
Giampiero Mancinelli in OpenAIREBiagio Saitta;
Mehul Patel;Biagio Saitta
Biagio Saitta in OpenAIREA. N. Solomin;
A. N. Solomin
A. N. Solomin in OpenAIRED. Gascon;
D. Voong;D. Gascon
D. Gascon in OpenAIREX. Cid Vidal;
Lain-Jong Li; Thierry Gys; R. Muresan; E. Teodorescu; Tjeerd Ketel; T. Pilař; Guy Wilkinson; Thomas Ruf;X. Cid Vidal
X. Cid Vidal in OpenAIREV. Obraztsov;
V. Obraztsov
V. Obraztsov in OpenAIREVincenzo Vagnoni;
B. Gui; J. Mylroie-Smith; Oleg Maev; Oleg Maev; M. Calvi; A. Martens;Vincenzo Vagnoni
Vincenzo Vagnoni in OpenAIREPaolo Gandini;
Pierluigi Campana; Raymond Mountain; A. Mac Raighne;Paolo Gandini
Paolo Gandini in OpenAIREKonstantin Belous;
Mikhail Shapkin;Konstantin Belous
Konstantin Belous in OpenAIREA. A. Alves;
D. Elsby;A. A. Alves
A. A. Alves in OpenAIREG. D. Lafferty;
D. van Eijk; C. Hadjivasiliou;G. D. Lafferty
G. D. Lafferty in OpenAIREarXiv: http://arxiv.org/abs/1206.5160 , 1206.5160
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $��^-/��^+$, $(p + \bar{p})/(��^+ + ��^-)$, $(K^+ + K^-)/(��^+ + ��^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $��$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $��y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport. Incorrect entries in Table 2 corrected. No consequences for rest of paper
CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 248visibility views 248 download downloads 237 Powered bymore_vert CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2012Embargo end date: 01 Jan 2012 Italy, France, Spain, Italy, France, Italy, France, Italy, Netherlands, United Kingdom, Spain, Italy, Italy, Italy, Spain, United Kingdom, Italy, Switzerland, Spain, France, United Kingdom, United Kingdom, United Kingdom, France, France, Italy, Spain, Netherlands, France, France, France, Italy, Netherlands, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Search for New Physics in..., SNSF | High Precision CP Violati..., SNSF | Particle Physics in the L...SNSF| Search for New Physics in Electroweak Penguin Transitions at LHCb ,SNSF| High Precision CP Violation Physics at LHCb ,SNSF| Particle Physics in the LHC EraAlexey Novoselov; J. Magnin; V. N. La Thi; Naylya Sagidova; Antonio Falabella; Albert Bursche; M. Matveev;Evelina Gersabeck;
Evelina Gersabeck
Evelina Gersabeck in OpenAIREV. Tisserand;
Maximilian Schlupp;V. Tisserand
V. Tisserand in OpenAIREC. Potterat;
C. Potterat
C. Potterat in OpenAIRECristina Lazzeroni;
U. Kerzel; Marie Helene Schune; B. Schmidt;Cristina Lazzeroni
Cristina Lazzeroni in OpenAIREC. J. Parkinson;
C. J. Parkinson
C. J. Parkinson in OpenAIREB. Sciascia;
F. Xing; G. N. Patrick; Massimiliano Ferro-Luzzi;B. Sciascia
B. Sciascia in OpenAIRER. Vazquez Gomez;
P. M. Bjørnstad; O. Francisco; J. Dickens; B. Pietrzyk; Jessica Prisciandaro; J. Buytaert; Nazim Hussain; Marcin Kucharczyk; Marcin Kucharczyk; Marcin Kucharczyk;R. Vazquez Gomez
R. Vazquez Gomez in OpenAIRET. E. Latham;
I. R. Kenyon; H. Ruiz;T. E. Latham
T. E. Latham in OpenAIRED. Souza;
F. Eisele; Th. S. Bauer; E. van Herwijnen; A. Bates; N. A. Smith; R. Silva Coutinho; Marc-Olivier Bettler; Alessia Satta; J. Anderson; Leonid Kravchuk; C. D'Ambrosio; D. Savrina; J. Panman;D. Souza
D. Souza in OpenAIREManuel Schiller;
Z. Mathe; Alexey Zhelezov;Manuel Schiller
Manuel Schiller in OpenAIREE. Grauges;
Timothy Gershon; Timothy Gershon; S. C. Haines; David Ward;E. Grauges
E. Grauges in OpenAIREA. Puig Navarro;
D. Wiedner; T. Huse; K. Hennessy; P. Rodriguez Perez; Andrey Vorobyev; Po-Hsun Chen; Po-Hsun Chen;A. Puig Navarro
A. Puig Navarro in OpenAIREEvgeny Gushchin;
Jack Benton; Sebastian Bachmann; R. S. Huston; H. Dijkstra; A. D. Nguyen; Gregory Ciezarek; N. Chiapolini; A. Borgia;Evgeny Gushchin
Evgeny Gushchin in OpenAIREAdriano Lai;
S. Eidelman; Ronan McNulty; Daniel Lacarrere; J. Rouvinet; Krzysztof Grzegorz Sobczak; Minh Tâm Tran; A. D. Webber;Adriano Lai
Adriano Lai in OpenAIRET. Lesiak;
Y.Y. Li;T. Lesiak
T. Lesiak in OpenAIREMikhail Zavertyaev;
Ph. Charpentier; Ronan Wallace;Mikhail Zavertyaev
Mikhail Zavertyaev in OpenAIREGiulia Manca;
Marcin Chrzaszcz; P. Diniz Batista; Dmitry Popov; C. Voß;Giulia Manca
Giulia Manca in OpenAIREV. V. Gligorov;
V. V. Gligorov
V. V. Gligorov in OpenAIREIvan Belyaev;
Ivan Belyaev
Ivan Belyaev in OpenAIREAndrey Golutvin;
Andrey Golutvin; Andrey Golutvin; W. Witzeling;Andrey Golutvin
Andrey Golutvin in OpenAIREAlessandro Petrolini;
Alessandro Petrolini
Alessandro Petrolini in OpenAIREJ. van Tilburg;
Thomas Blake;J. van Tilburg
J. van Tilburg in OpenAIREA. Nomerotski;
A. Nomerotski;A. Nomerotski
A. Nomerotski in OpenAIRER. Lefèvre;
V.G. Shevchenko; Jing Wang; Robert Currie;R. Lefèvre
R. Lefèvre in OpenAIRES. Roiser;
Rustem Dzhelyadin; Edwige Tournefier; Edwige Tournefier; K. De Bruyn; A. Gomes; Giacomo Graziani; A. Richards; Marc S. Williams;S. Roiser
S. Roiser in OpenAIREPatrick Owen;
A. Palano; Piotr Morawski; J. P. Lees; P. Shatalov; T. Brambach;Patrick Owen
Patrick Owen in OpenAIREM. Seco;
Nikolay Bondar; Marco Clemencic; K. Ciba; E. Lanciotti; Iurii Raniuk; P. Henrard;G. Raven;
C. Langenbruch; V. Fave; Andrew Cook; G. D. Patel; Miriam Gandelman; S. Belogurov; Harry Cliff; Sandra Amato; David Websdale; F. Dupertuis; O. Kochebina;G. Raven
G. Raven in OpenAIREV. A. Kudryavtsev;
Neville Harnew; E. Ben-Haim;V. A. Kudryavtsev
V. A. Kudryavtsev in OpenAIREOlaf Steinkamp;
Oleg Yushchenko; Haonan Lu; Chung Nguyen-Mau; A. Camboni; Oliver Grünberg; Ilya Komarov; J. A. Hernando Morata;Olaf Steinkamp
Olaf Steinkamp in OpenAIRERoberta Santacesaria;
Carla Göbel;Roberta Santacesaria
Roberta Santacesaria in OpenAIREFrancesca Dordei;
Francesca Dordei
Francesca Dordei in OpenAIREDaniel Charles Craik;
Daniel Charles Craik
Daniel Charles Craik in OpenAIREJ. J. Saborido Silva;
J. J. Saborido Silva
J. J. Saborido Silva in OpenAIRED. A. Milanes;
S. Schleich; A. Sparkes; Rolf Lindner; Vitaly Vorobyev; T. M. Karbach; A. Dosil Suárez; Hamish Gordon; M. Whitehead;D. A. Milanes
D. A. Milanes in OpenAIREGiampiero Mancinelli;
L. A. Granado Cardoso;Giampiero Mancinelli
Giampiero Mancinelli in OpenAIREBiagio Saitta;
Mehul Patel;Biagio Saitta
Biagio Saitta in OpenAIREA. N. Solomin;
A. N. Solomin
A. N. Solomin in OpenAIRED. Gascon;
D. Voong;D. Gascon
D. Gascon in OpenAIREX. Cid Vidal;
Lain-Jong Li; Thierry Gys; R. Muresan; E. Teodorescu; Tjeerd Ketel; T. Pilař; Guy Wilkinson; Thomas Ruf;X. Cid Vidal
X. Cid Vidal in OpenAIREV. Obraztsov;
V. Obraztsov
V. Obraztsov in OpenAIREVincenzo Vagnoni;
B. Gui; J. Mylroie-Smith; Oleg Maev; Oleg Maev; M. Calvi; A. Martens;Vincenzo Vagnoni
Vincenzo Vagnoni in OpenAIREPaolo Gandini;
Pierluigi Campana; Raymond Mountain; A. Mac Raighne;Paolo Gandini
Paolo Gandini in OpenAIREKonstantin Belous;
Mikhail Shapkin;Konstantin Belous
Konstantin Belous in OpenAIREA. A. Alves;
D. Elsby;A. A. Alves
A. A. Alves in OpenAIREG. D. Lafferty;
D. van Eijk; C. Hadjivasiliou;G. D. Lafferty
G. D. Lafferty in OpenAIREarXiv: http://arxiv.org/abs/1206.5160 , 1206.5160
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $��^-/��^+$, $(p + \bar{p})/(��^+ + ��^-)$, $(K^+ + K^-)/(��^+ + ��^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $��$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $��y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport. Incorrect entries in Table 2 corrected. No consequences for rest of paper
CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 248visibility views 248 download downloads 237 Powered bymore_vert CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:SAGE Publications Barrows, Sam; Blomkvist, Magnus; Dimic, Nebojsa; Vulanovic; Milos;This study examines the impact of oil price uncertainty on mergers and acquisition (M&A) activity in the oil and gas sector. Analyzing this industry enables us to construct a natural forward-looking measure of oil price uncertainty, namely the implied crude oil volatility. Using a sample of U.S. firms in the oil and gas sector from 1994–2018 containing 4,323 announced transactions, we document that oil price uncertainty is negatively related to future M&A activity. Uncertainty is mainly a driver of horizontal and vertical M&A activity, where upstream firms are more affected by this uncertainty than downstream firms. Our results lend support to a real options explanation of investment under uncertainty where firms choose to defer investments as a response to increased uncertainty.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:SAGE Publications Barrows, Sam; Blomkvist, Magnus; Dimic, Nebojsa; Vulanovic; Milos;This study examines the impact of oil price uncertainty on mergers and acquisition (M&A) activity in the oil and gas sector. Analyzing this industry enables us to construct a natural forward-looking measure of oil price uncertainty, namely the implied crude oil volatility. Using a sample of U.S. firms in the oil and gas sector from 1994–2018 containing 4,323 announced transactions, we document that oil price uncertainty is negatively related to future M&A activity. Uncertainty is mainly a driver of horizontal and vertical M&A activity, where upstream firms are more affected by this uncertainty than downstream firms. Our results lend support to a real options explanation of investment under uncertainty where firms choose to defer investments as a response to increased uncertainty.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG doi: 10.3390/app13137613
Energy harvesting is a useful technique for various kinds of self-powered electronic devices and systems as well as Internet of Things technology. This study presents a two-degrees-of-freedom (2DOF) electromagnetic energy harvester that can use environment vibration and provide energy for small electronic devices. The proposed harvester consists of a cylindrical tube with two moving magnets suspended by a magnetic spring mechanism and a stationary coil. In order to verify the theoretical model, a prototype electromagnetic harvester was constructed and tested. The influence of key parameters, including excitation acceleration, response to a harmonic frequency sweep, and electromechanical coupling on the generated characteristics of the harvester, was investigated. The experimental and theoretical results showed that the proposed electromagnetic energy harvester was able to increase the resonance bandwidth (60–1200 rad/s) and output power (0.2 W). However, due to strong nonlinearity, an unstable region occurred near the main first resonance, which resulted from the Neimark–Sacker bifurcation.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG doi: 10.3390/app13137613
Energy harvesting is a useful technique for various kinds of self-powered electronic devices and systems as well as Internet of Things technology. This study presents a two-degrees-of-freedom (2DOF) electromagnetic energy harvester that can use environment vibration and provide energy for small electronic devices. The proposed harvester consists of a cylindrical tube with two moving magnets suspended by a magnetic spring mechanism and a stationary coil. In order to verify the theoretical model, a prototype electromagnetic harvester was constructed and tested. The influence of key parameters, including excitation acceleration, response to a harmonic frequency sweep, and electromechanical coupling on the generated characteristics of the harvester, was investigated. The experimental and theoretical results showed that the proposed electromagnetic energy harvester was able to increase the resonance bandwidth (60–1200 rad/s) and output power (0.2 W). However, due to strong nonlinearity, an unstable region occurred near the main first resonance, which resulted from the Neimark–Sacker bifurcation.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2076-3417/13/13/7613/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app13137613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Proceedings of the National Academy of Sciences pmid: 29440422
pmc: PMC5834669
Significance Women in science face barriers to professional advancement. One of the most important forums for international climate science is the Intergovernmental Panel on Climate Change, where there has been a slow increase in the proportion of women authors since the first assessment in 1990. Our survey of more than 100 female Intergovernmental Panel on Climate Change authors explores their experience and perceptions, the barriers to their full participation that they identify, and recommendations for improvements. While we find that some women reported a positive experience, others felt women were poorly represented and heard and encountered barriers beyond their gender including race, nationality, command of English, and discipline. The study contributes to the larger literature on gender and science and provides recommendations for greater inclusion.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1710271115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1710271115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Proceedings of the National Academy of Sciences pmid: 29440422
pmc: PMC5834669
Significance Women in science face barriers to professional advancement. One of the most important forums for international climate science is the Intergovernmental Panel on Climate Change, where there has been a slow increase in the proportion of women authors since the first assessment in 1990. Our survey of more than 100 female Intergovernmental Panel on Climate Change authors explores their experience and perceptions, the barriers to their full participation that they identify, and recommendations for improvements. While we find that some women reported a positive experience, others felt women were poorly represented and heard and encountered barriers beyond their gender including race, nationality, command of English, and discipline. The study contributes to the larger literature on gender and science and provides recommendations for greater inclusion.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1710271115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1710271115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Elsevier BV Authors:Rona, Aldo;
Rona, Aldo
Rona, Aldo in OpenAIREKadhim, Hakim Tarteeb Kadhim;
Jabbar, Faris A.;Kadhim, Hakim Tarteeb Kadhim
Kadhim, Hakim Tarteeb Kadhim in OpenAIREA parametric numerical investigation is performed of the natural convection and heat transfer in an enclosure with opposing wavy walls, layered by a porous medium, saturated by a hybrid nanofluid, at different inclination angles. The Galerkin finite element method is used to obtain steady-state solutions of the heat and mass convection laws by application of the semi-implicit method for pressure linked equations algorithm. The Darcy-Brinkman model is used for representing the state variables change in the porous layer. The influence of six parameters on the flow and heat transfer rate is described. These are the inclination angle, varied from 0o to 90o, the Rayleigh number (104 ≤ 𝑅𝑎 ≤ 107), the Darcy number (10-5 ≤ 𝐷𝑎 ≤ 10-2), the porous layer width (0.2 ≤ 𝑊p ≤ 0.8), the number of undulation (1≤ 𝑁 ≤ 4), and the nanoparticle volume fraction (0 ≤ 𝜙 ≤ 0.2). It is found that the inclination angle is a very influential control parameter for the hybrid nanofluid in the enclosure. Its effect is modulated by the other parameters. The model predicts that adding the nanoparticles enhances the heat transfer between the opposing walls of the cell compared to the pure fluid over the whole range of inclination angles. Finally, a comparison of the heat transfer enhancement based on the suspension of Al2O3 nanoparticles in water as a single nanofluid versus using Cu-Al2O3 nanoparticles in water as a hybrid nanofluid indicates better heat transfer performance by the hybrid nanofluid.
figshare arrow_drop_down International Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert figshare arrow_drop_down International Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Publisher:Elsevier BV Authors:Rona, Aldo;
Rona, Aldo
Rona, Aldo in OpenAIREKadhim, Hakim Tarteeb Kadhim;
Jabbar, Faris A.;Kadhim, Hakim Tarteeb Kadhim
Kadhim, Hakim Tarteeb Kadhim in OpenAIREA parametric numerical investigation is performed of the natural convection and heat transfer in an enclosure with opposing wavy walls, layered by a porous medium, saturated by a hybrid nanofluid, at different inclination angles. The Galerkin finite element method is used to obtain steady-state solutions of the heat and mass convection laws by application of the semi-implicit method for pressure linked equations algorithm. The Darcy-Brinkman model is used for representing the state variables change in the porous layer. The influence of six parameters on the flow and heat transfer rate is described. These are the inclination angle, varied from 0o to 90o, the Rayleigh number (104 ≤ 𝑅𝑎 ≤ 107), the Darcy number (10-5 ≤ 𝐷𝑎 ≤ 10-2), the porous layer width (0.2 ≤ 𝑊p ≤ 0.8), the number of undulation (1≤ 𝑁 ≤ 4), and the nanoparticle volume fraction (0 ≤ 𝜙 ≤ 0.2). It is found that the inclination angle is a very influential control parameter for the hybrid nanofluid in the enclosure. Its effect is modulated by the other parameters. The model predicts that adding the nanoparticles enhances the heat transfer between the opposing walls of the cell compared to the pure fluid over the whole range of inclination angles. Finally, a comparison of the heat transfer enhancement based on the suspension of Al2O3 nanoparticles in water as a single nanofluid versus using Cu-Al2O3 nanoparticles in water as a hybrid nanofluid indicates better heat transfer performance by the hybrid nanofluid.
figshare arrow_drop_down International Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert figshare arrow_drop_down International Journal of Mechanical SciencesArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijmecsci.2020.105889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 HungaryPublisher:Elsevier BV Authors:Viktor Józsa;
Viktor Józsa
Viktor Józsa in OpenAIREGyöngyvér Hidegh;
Attila Kun-Balog;Gyöngyvér Hidegh
Gyöngyvér Hidegh in OpenAIREJo-Han Ng;
+1 AuthorsJo-Han Ng
Jo-Han Ng in OpenAIREViktor Józsa;
Viktor Józsa
Viktor Józsa in OpenAIREGyöngyvér Hidegh;
Attila Kun-Balog;Gyöngyvér Hidegh
Gyöngyvér Hidegh in OpenAIREJo-Han Ng;
Jo-Han Ng
Jo-Han Ng in OpenAIRECheng Tung Chong;
Cheng Tung Chong
Cheng Tung Chong in OpenAIREAbstract Liquid fuels are likely to remain the main energy source in long-range transportation and aviation for several decades. To reduce our dependence on fossil fuels, liquid biofuels can be blended to fossil fuels – or used purely. In this paper, coconut methyl ester, standard diesel fuel (EN590:2017), and their blends were investigated in 25 V/V% steps. A novel turbulent combustion chamber was developed to facilitate combustion in a large volume that leads to ultra-low emissions. The combustion power of the swirl burner was 13.3 kW, and the air-to-fuel equivalence ratio was 1.25. Two parameters, combustion air preheating temperature and atomizing air pressure were adjusted in the range of 150–350 °C and 0.3–0.9 bar, respectively. Both straight and lifted flames were observed. The closed, atmospheric combustion chamber resulted in CO emission below 10 ppm in the majority of the cases. NO emission varied between 60 and 183 ppm at straight flame cases and decreased below 20 ppm when the flame was lifted since the combustion occurred in a large volume. This operation mode fulfills the 2015/2193/EU directive for gas combustion by 25%, which is twice as strict as liquid fuel combustion regulations. The 90% NO emission reduction was also concluded when compared to a lean premixed prevaporized burner under similar conditions. This favorable operation mode was named as Mixture Temperature-Controlled (MTC) Combustion. The chemiluminescent emission of lifted flames was also low, however, the OH* emission of straight flames was clearly observable and followed the trends of NO emission. The MTC mode may lead to significantly decreased pollutant emission of steady-operating devices like boilers, furnaces, and both aviation and industrial gas turbines, meaning an outstanding contribution to more environmentally friendly technologies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 HungaryPublisher:Elsevier BV Authors:Viktor Józsa;
Viktor Józsa
Viktor Józsa in OpenAIREGyöngyvér Hidegh;
Attila Kun-Balog;Gyöngyvér Hidegh
Gyöngyvér Hidegh in OpenAIREJo-Han Ng;
+1 AuthorsJo-Han Ng
Jo-Han Ng in OpenAIREViktor Józsa;
Viktor Józsa
Viktor Józsa in OpenAIREGyöngyvér Hidegh;
Attila Kun-Balog;Gyöngyvér Hidegh
Gyöngyvér Hidegh in OpenAIREJo-Han Ng;
Jo-Han Ng
Jo-Han Ng in OpenAIRECheng Tung Chong;
Cheng Tung Chong
Cheng Tung Chong in OpenAIREAbstract Liquid fuels are likely to remain the main energy source in long-range transportation and aviation for several decades. To reduce our dependence on fossil fuels, liquid biofuels can be blended to fossil fuels – or used purely. In this paper, coconut methyl ester, standard diesel fuel (EN590:2017), and their blends were investigated in 25 V/V% steps. A novel turbulent combustion chamber was developed to facilitate combustion in a large volume that leads to ultra-low emissions. The combustion power of the swirl burner was 13.3 kW, and the air-to-fuel equivalence ratio was 1.25. Two parameters, combustion air preheating temperature and atomizing air pressure were adjusted in the range of 150–350 °C and 0.3–0.9 bar, respectively. Both straight and lifted flames were observed. The closed, atmospheric combustion chamber resulted in CO emission below 10 ppm in the majority of the cases. NO emission varied between 60 and 183 ppm at straight flame cases and decreased below 20 ppm when the flame was lifted since the combustion occurred in a large volume. This operation mode fulfills the 2015/2193/EU directive for gas combustion by 25%, which is twice as strict as liquid fuel combustion regulations. The 90% NO emission reduction was also concluded when compared to a lean premixed prevaporized burner under similar conditions. This favorable operation mode was named as Mixture Temperature-Controlled (MTC) Combustion. The chemiluminescent emission of lifted flames was also low, however, the OH* emission of straight flames was clearly observable and followed the trends of NO emission. The MTC mode may lead to significantly decreased pollutant emission of steady-operating devices like boilers, furnaces, and both aviation and industrial gas turbines, meaning an outstanding contribution to more environmentally friendly technologies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors:Shraddha Maitra;
Bruce Dien;Shraddha Maitra
Shraddha Maitra in OpenAIREStephen P. Long;
Stephen P. Long
Stephen P. Long in OpenAIREVijay Singh;
Vijay Singh
Vijay Singh in OpenAIREdoi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors:Shraddha Maitra;
Bruce Dien;Shraddha Maitra
Shraddha Maitra in OpenAIREStephen P. Long;
Stephen P. Long
Stephen P. Long in OpenAIREVijay Singh;
Vijay Singh
Vijay Singh in OpenAIREdoi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu