- home
- Advanced Search
- Energy Research
- 2021-2025
- PT
- AO
- Energies
- Energy Research
- 2021-2025
- PT
- AO
- Energies
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Pedro Macedo;
Pedro Macedo
Pedro Macedo in OpenAIREMara Madaleno;
Mara Madaleno
Mara Madaleno in OpenAIREdoi: 10.3390/en16010277
The connection between Earth’s global temperature and carbon dioxide (CO2) emissions is one of the highest challenges in climate change science since there is some controversy about the real impact of CO2 emissions on the increase of global temperature. This work contributes to the existing literature by analyzing the relationship between CO2 emissions and the Earth’s global temperature for 61 years, providing a recent review of the emerging literature as well. Through a statistical approach based on maximum entropy, this study supports the results of other techniques that identify a positive impact of CO2 in the increase of the Earth’s global temperature. Given the well-known difficulties in the measurement of global temperature and CO2 emissions with high precision, this statistical approach is particularly appealing around climate change science, as it allows the replication of the original time series with the subsequent construction of confidence intervals for the model parameters. To prevent future risks, besides the present urgent decrease of greenhouse gas emissions, it is necessary to stop using the planet and nature as if resources were infinite.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010277&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:MDPI AG Funded by:EC | FEEdBACkEC| FEEdBACkAuthors:Fernando Cassola;
Fernando Cassola
Fernando Cassola in OpenAIRELeonel Morgado;
Leonel Morgado
Leonel Morgado in OpenAIREAntónio Coelho;
António Coelho
António Coelho in OpenAIREHugo Paredes;
+3 AuthorsHugo Paredes
Hugo Paredes in OpenAIREFernando Cassola;
Fernando Cassola
Fernando Cassola in OpenAIRELeonel Morgado;
Leonel Morgado
Leonel Morgado in OpenAIREAntónio Coelho;
António Coelho
António Coelho in OpenAIREHugo Paredes;
Hugo Paredes
Hugo Paredes in OpenAIREAntónio Barbosa;
Helga Tavares;António Barbosa
António Barbosa in OpenAIREFilipe Soares;
Filipe Soares
Filipe Soares in OpenAIREdoi: 10.3390/en15124354
Reducing office buildings’ energy consumption can contribute significantly towards carbon reduction commitments since it represents ∼40% of total energy consumption. Major components of this are lighting, electrical equipment, heating, and central cooling systems. Solid evidence demonstrates that individual occupants’ behaviors impact these energy consumption components. In this work, we propose the methodology of using virtual choreographies to identify and prioritize behavior-change interventions for office users based on the potential impact of specific behaviors on energy consumption. We studied the energy-related office behaviors of individuals by combining three sources of data: direct observations, electricity meters, and computer logs. Data show that there are behaviors with significant consumption impact but with little potential for behavioral change, while other behaviors have substantial potential for lowering energy consumption via behavioral change.
Energies arrow_drop_down Repositório Aberto da Universidade AbertaArticle . 2022Data sources: Repositório Aberto da Universidade Abertaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 70visibility views 70 download downloads 48 Powered bymore_vert Energies arrow_drop_down Repositório Aberto da Universidade AbertaArticle . 2022Data sources: Repositório Aberto da Universidade Abertaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Bianca Magalhães;
Bianca Magalhães
Bianca Magalhães in OpenAIREPedro Bento;
Pedro Bento
Pedro Bento in OpenAIREJosé Pombo;
José Pombo
José Pombo in OpenAIREMaria do Rosário Calado;
+1 AuthorsMaria do Rosário Calado
Maria do Rosário Calado in OpenAIREBianca Magalhães;
Bianca Magalhães
Bianca Magalhães in OpenAIREPedro Bento;
Pedro Bento
Pedro Bento in OpenAIREJosé Pombo;
José Pombo
José Pombo in OpenAIREMaria do Rosário Calado;
Maria do Rosário Calado
Maria do Rosário Calado in OpenAIRESílvio Mariano;
Sílvio Mariano
Sílvio Mariano in OpenAIREdoi: 10.3390/en17081926
Short-term load forecasting (STLF) plays a vital role in ensuring the safe, efficient, and economical operation of power systems. Accurate load forecasting provides numerous benefits for power suppliers, such as cost reduction, increased reliability, and informed decision-making. However, STLF is a complex task due to various factors, including non-linear trends, multiple seasonality, variable variance, and significant random interruptions in electricity demand time series. To address these challenges, advanced techniques and models are required. This study focuses on the development of an efficient short-term power load forecasting model using the random forest (RF) algorithm. RF combines regression trees through bagging and random subspace techniques to improve prediction accuracy and reduce model variability. The algorithm constructs a forest of trees using bootstrap samples and selects random feature subsets at each node to enhance diversity. Hyperparameters such as the number of trees, minimum sample leaf size, and maximum features for each split are tuned to optimize forecasting results. The proposed model was tested using historical hourly load data from four transformer substations supplying different campus areas of the University of Beira Interior, Portugal. The training data were from January 2018 to December 2021, while the data from 2022 were used for testing. The results demonstrate the effectiveness of the RF model in forecasting short-term hourly and one day ahead load and its potential to enhance decision-making processes in smart grid operations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:FCT | D4FCT| D4Authors: Mohammad Zaid;Chang-Hua Lin;
Chang-Hua Lin
Chang-Hua Lin in OpenAIREShahrukh Khan;
Shahrukh Khan
Shahrukh Khan in OpenAIREJaved Ahmad;
+5 AuthorsJaved Ahmad
Javed Ahmad in OpenAIREMohammad Zaid;Chang-Hua Lin;
Chang-Hua Lin
Chang-Hua Lin in OpenAIREShahrukh Khan;
Shahrukh Khan
Shahrukh Khan in OpenAIREJaved Ahmad;
Javed Ahmad
Javed Ahmad in OpenAIREMohd Tariq;
Mohd Tariq
Mohd Tariq in OpenAIREArshad Mahmood;
Arshad Mahmood
Arshad Mahmood in OpenAIREAdil Sarwar;
Adil Sarwar
Adil Sarwar in OpenAIREBasem Alamri;
Basem Alamri
Basem Alamri in OpenAIREAhmad Alahmadi;
Ahmad Alahmadi
Ahmad Alahmadi in OpenAIREdoi: 10.3390/en14144372
This paper presents three new and improved non-isolated topologies of quadratic boost converters (QBC). Reduced voltage stress across switching devices and high voltage gain with single switch operation are the main advantages of the proposed topologies. These topologies utilize voltage multiplier cells (VMC) made of switched capacitors and switched inductors to increase the converter’s voltage gain. The analysis in continuous conduction mode is discussed in detail. The proposed converter’s voltage gain is higher than the conventional quadratic boost converter, and other recently introduced boost converters. The proposed topologies utilize only a single switch and have continuous input current and low voltage stress across switch, capacitors, and diodes, which leads to the selection of low voltage rating components. The converter’s non-ideal voltage gain is also determined by considering the parasitic capacitance and ON state resistances of switch and diodes. The efficiency analysis incorporating switching and conduction losses of the switching and passive elements is done using PLECS software (Plexim, Zurich, Switzerland). The hardware prototype of the proposed converters is developed and tested for verification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:MDPI AG Authors:Júnia Alves-Ferreira;
Júnia Alves-Ferreira
Júnia Alves-Ferreira in OpenAIRELuís C. Duarte;
Luís C. Duarte
Luís C. Duarte in OpenAIREMaria C. Fernandes;
Maria C. Fernandes
Maria C. Fernandes in OpenAIREHelena Pereira;
+1 AuthorsHelena Pereira
Helena Pereira in OpenAIREJúnia Alves-Ferreira;
Júnia Alves-Ferreira
Júnia Alves-Ferreira in OpenAIRELuís C. Duarte;
Luís C. Duarte
Luís C. Duarte in OpenAIREMaria C. Fernandes;
Maria C. Fernandes
Maria C. Fernandes in OpenAIREHelena Pereira;
Helena Pereira
Helena Pereira in OpenAIREFlorbela Carvalheiro;
Florbela Carvalheiro
Florbela Carvalheiro in OpenAIREdoi: 10.3390/en16010391
handle: 20.500.12207/5962
Cistus ladanifer (rockrose) is a widespread shrub species in the Mediterranean region well known due to its production of labdanum gum, especially in the hot season. Its leaves and branches can be subjected to different extraction and distillation processes to produce various types of extracts. The natural extracts of C. ladanifer have several applications, especially in the perfumery and cosmetics sector. C. ladanifer extracts, in addition to presenting interesting odoriferous properties, are also known for their bioactive properties, such as antioxidant and antimicrobial. Use of this species in animal feed or phytostabilisation of mining areas has also been successfully applied. On the other hand, the lignin and polysaccharides that are the major fractions from Cistus residues can be relevant sources of high-value products in a biorefinery framework. Recently, it has been reported that the residues obtained from the essential oil industry can sustain production of significant amounts of other marketable products, namely phenolic compounds, oligomeric and monomeric sugars, lignin, and lactic acid. All these applications show the potential of C. ladanifer as a raw material to be fully valued in a biorefinery context, contributing to important revenues and generating an associated marketable biobased product portfolio.
IPBeja Repositório C... arrow_drop_down IPBeja Repositório Científico (Instituto Politécnico de Beja)Article . 2023License: CC BY NCFull-Text: https://www.mdpi.com/1996-1073/16/1/391Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2023License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 75visibility views 75 download downloads 139 Powered bymore_vert IPBeja Repositório C... arrow_drop_down IPBeja Repositório Científico (Instituto Politécnico de Beja)Article . 2023License: CC BY NCFull-Text: https://www.mdpi.com/1996-1073/16/1/391Data sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2023License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Wenxiao Chu;
Maria Vicidomini;Wenxiao Chu
Wenxiao Chu in OpenAIREFrancesco Calise;
Francesco Calise
Francesco Calise in OpenAIRENeven Duić;
+3 AuthorsNeven Duić
Neven Duić in OpenAIREWenxiao Chu;
Maria Vicidomini;Wenxiao Chu
Wenxiao Chu in OpenAIREFrancesco Calise;
Francesco Calise
Francesco Calise in OpenAIRENeven Duić;
Neven Duić
Neven Duić in OpenAIREPoul Alberg Østergaard;
Poul Alberg Østergaard
Poul Alberg Østergaard in OpenAIREQiuwang Wang;
Maria da Graça Carvalho;Qiuwang Wang
Qiuwang Wang in OpenAIREdoi: 10.3390/en16237897
The current applications in the energy sector are based largely on fossil fuels which release greenhouse gas emissions to the atmosphere. To face the issue of global warming, the energy sector has to transfer to and develop sustainable energy solutions that do not release carbon emissions. This is one of the primary motivators for the SDEWES conference as well as for this review, and previous ones, examining the most recent works based on sustainable and green energy production in such fields. The 17th Conference on the Sustainable Development of Energy, Water, and Environment Systems (SDEWES) was held on 6–10 November 2022 in Paphos, Cyprus. The SDEWES conference aims at solving complex and ongoing concerns that approach a long-term perspective and supporting innovative solutions and continuous monitoring and evaluation. This review paper aims at collecting the main presented papers focused on the following hot topics: low-carbon technologies based on renewable and clean-energy systems, including mainly biomass, solar, and wind energy applications; energy storage systems; hydrogen-based systems; energy-saving strategies in buildings; and the adoption of smart management strategies using renewable energy systems. These topics are investigated in order to propose solutions to address the issues of climate change, water scarcity, and energy saving. From the analyzed works, we note that some key issues for sustainable development remain to be further addressed: such as novel and advanced energy storage systems, green hydrogen production, novel low-temperature district heating and cooling networks, novel solar technologies for the simultaneous production of power and high temperature heat, solar desalination for hydrogen production systems, and agrivoltaic systems for the production of power and food.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16237897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16237897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:FCT | CENSE, FCT | 2020.04774.BDFCT| CENSE ,FCT| 2020.04774.BDAuthors:Miguel Macias Sequeira;
Miguel Macias Sequeira
Miguel Macias Sequeira in OpenAIREJoão Pedro Gouveia;
João Pedro Gouveia
João Pedro Gouveia in OpenAIREdoi: 10.3390/en15155389
Buildings account for 40% of the European Union’s energy consumption. Deep energy renovation of residential buildings is key for decarbonization and energy poverty alleviation. However, renovation is occurring at far below the needed pace and depth. In this context, building renovation one-stop shops, which bring all project phases under one roof and provide advice, support, and finance to households, are highlighted as a promising solution. Nevertheless, this model is still absent or under-developed in most European countries and remains understudied in the scientific literature. Therefore, the present research goals are as follows: (i) to provide a critical review of emerging one-stop shop models; (ii) to streamline the deployment of building renovation digital one-stop shops by piloting a sequential multi-staged approach for Portuguese households and proposing it for replication elsewhere; and (iii) to compare case-study insights with other one-stop shops and discuss the notion in the context of the European Renovation Wave. In total, for the Portuguese case-study, five steps were conducted. The first three—stakeholder mapping, expert interviews, and customer journey—aimed to gather intel on the local energy renovation market. The results from these stages informed the design of the platform (fourth step). Finally, a post-launch market consultation survey gathered user feedback (fifth step). Insights from this study suggest that digital one-stop shops, while providing a helpful tool to close information gaps and activate specific audiences, may be insufficient on their own. As such, a more comprehensive set of instruments supporting households is needed to accelerate building renovation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 24 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:FCT | D4FCT| D4doi: 10.3390/en16062892
In this paper, a novel soft switching push-pull LC resonant DC-DC converter for energy sources is presented. In a high step-up converter, the input of primary side possesses low voltage and high current, so the losses caused by the current account for most of the total power loss. At the same time, the high-voltage stress of the high-voltage output components on the secondary side is also a major problem. Therefore, a high-gain isolated push-pull converter with a secondary-side resonant circuit is proposed, so that the primary-side switches have zero voltage switching (ZVS) and the secondary-side diodes have zero current switching (ZCS). The push-pull structure can reduce the number of active switches, so that the total power loss on the primary side can be reduced. The converter has a resonant tank circuit arranged between the secondary side of isolation transformer and the high-voltage output rectification module. The high-voltage output rectifier module adopts a full-bridge architecture suitable for high-voltage coupling connection. The low-side power switching module adopts a push-pull architecture suitable for low-voltage and high-current applications. The resonant tank circuit uses an inductor–capacitor (LC) structure to improve the resonant tank circuit, which achieves soft switching during power transfer, increasing the efficiency of the converter and improving the electromagnetic compatibility. The main advantage of this technology is that the secondary-side leakage inductance of transformer and the resonant capacitance are connected in series to achieve ZVS for switches and ZCS for diodes. Finally, a prototype of a high-gain push-pull resonant converter was established. The converter was operated at a fixed switching frequency of 135 kHz and a duty cycle of approximately 0.5. The efficiency of the converter can reach 97.1% under experimental tests at an output voltage of 400 V and a rated output power of 500 W.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16062892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Teresa Nogueira;
Teresa Nogueira
Teresa Nogueira in OpenAIREJosé Carvalho;
José Carvalho
José Carvalho in OpenAIREJosé Magano;
José Magano
José Magano in OpenAIREdoi: 10.3390/en15155418
Mineral oil has long been used as an adequate coolant and dielectric medium in power transformer design. However, it is flammable and environmentally risky as it may be leaked or spilled. Therefore, ester fluids, which have been increasingly used in the last two decades, look promising as an ideal dielectric option. This research aims to better understand how using ester fluid insulation in power transformers impacts their physical and electrical dimensions, including their load-losses, impedance, masses, and equipment dimensions. Three case studies were carried out in a Portuguese electrical equipment manufacturer’s facility, with varying electrical parameters and physical properties of the mineral oil and ester-filled power transformers. The main results enhanced the known good electrical behavior of ester fluids, namely creating a lower electric field around winding wedges, yet the use of ester fluids led to higher load-losses, larger masses, additional radiators and, consequently, higher manufacturing costs. Nevertheless, the contribution of ester-filled power transformers to the improved environmental safety (reducing spillage and fire risks), among other advantages, makes ester fluids a truly eco-friendly option for power transformer design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:FCT | UI/BD/151091/2021FCT| UI/BD/151091/2021Authors: Tiago Alves;João Paulo N. Torres;
João Paulo N. Torres
João Paulo N. Torres in OpenAIRERicardo A. Marques Lameirinhas;
Ricardo A. Marques Lameirinhas
Ricardo A. Marques Lameirinhas in OpenAIRECarlos A. F. Fernandes;
Carlos A. F. Fernandes
Carlos A. F. Fernandes in OpenAIREdoi: 10.3390/en14133863
The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu