- home
- Advanced Search
- Energy Research
- 13. Climate action
- QA
- Qatar Foundation
- Energy Research
- 13. Climate action
- QA
- Qatar Foundation
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Ragad F. Alshebli;
Ragad F. Alshebli
Ragad F. Alshebli in OpenAIREYusuf Bicer;
Yusuf Bicer
Yusuf Bicer in OpenAIREdoi: 10.3390/su15031876
Sustaining agricultural demands is a typical problem, particularly in locations afflicted by the scarcity of fresh water, poor farming soil, and hot weather. The main goal of this study is to perform a thermodynamic analysis of an integrated multigeneration system containing a direct contact membrane distillation crystallization system that recovers beneficial hydroponic farming nutrients from seawater using renewable energy resources. A parametric study is carried out to determine the impacts of various factors on the system, such as changing the rate of mass flow rate, recovery ratio, and salinity. This study proposes a novel sustainable multigeneration system for seawater desalination and ions recovery using the direct contact membrane distillation crystallization system to provide the hydroponic solution and greenhouse ventilation using the dual evaporator vapor compression refrigeration system. With overall exergy efficiency and energy efficiency of 41.40%, and 39.80%, respectively, the system requires about 1182.69 kW and 5314.6 kW of electrical and thermal power in total, respectively, to desalinate 5 kg/s of seawater and recover 170 mg/s of Sulfate (SO4), 81.28 mg/s of Magnesium (Mg), 25.48 mg/s of Calcium (Ca), and 24.16 mg/s of Potassium (K), yielding about 4.4 kg/s of a hydroponic solution, and ventilating 25 greenhouses with a volume of 600 m3 of single greenhouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Publisher:Wiley Authors:Muhammad Usman Sajid;
Muhammad Usman Sajid
Muhammad Usman Sajid in OpenAIREYusuf Bicer;
Yusuf Bicer
Yusuf Bicer in OpenAIREIn hot climatic conditions, the temperature inside a greenhouse is much higher than the ambient temperature and requires significant cooling to maintain the temperature in the optimal range. This study proposes a novel concept for a self‐sustaining greenhouse, which integrates evacuated tube collectors, a multistage flash desalination system, vapor absorption cooling system, and photovoltaic thermal (PV/T) system to produce freshwater, cooling, and electricity. The PV/T system uses spectrum selective nanofluid that is circulated over the roof of the greenhouse and absorbs solar radiation having wavelengths greater than 1400 nm to reduce cooling load inside the greenhouse and optimize the spectrum use. The performance of the proposed system is evaluated using energy and exergy analysis. The energy efficiencies of the evacuated tube collector, desalination unit, and PV/T system are obtained as 45.85%, 46.16%, and 51.25%, respectively. The absorption cooling system achieves an energetic coefficient of performance of 0.83. The overall energy and exergy efficiencies of the proposed system are found to be 30% and 5.88%, respectively. The application of spectrum selective nanofluid on the roof of the greenhouse yields about 26% reduction in the cooling load of the greenhouse.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202000875&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Malaysia, United KingdomPublisher:Elsevier BV Authors: Pei Sean Goh;Ahmad Fauzi Ismail;
Ahmad Fauzi Ismail
Ahmad Fauzi Ismail in OpenAIRENidal Hilal;
Nidal Hilal
Nidal Hilal in OpenAIRELe développement multidisciplinaire, innovant et à haute valeur ajoutée de systèmes de séparation à haute performance, rentables et respectueux de l'environnement est hautement souhaitable pour relever les défis de durabilité auxquels est confrontée la technologie actuelle de dessalement. En raison de leur polyvalence et de leur immense potentiel d'évolution des innovations scientifiques et techniques, la nanotechnologie est probablement l'une des stratégies les plus importantes qui a acquis une reconnaissance scientifique et publique croissante pour fournir des solutions qui peuvent repousser les limites de la durabilité dans la technologie de dessalement à membrane. Cette brève revue fournit un bref aperçu des rôles et des perspectives de la nanotechnologie, en particulier de la technologie des membranes nano-activées, pour servir d'élément clé afin de proposer des solutions réalisables pour le développement durable de la technologie de dessalement des membranes. La contribution met également en évidence les stratégies de transformation des risques et des défis de cette technologie de pointe en avantage concurrentiel afin de générer rapidement et efficacement des valeurs dans l'amélioration des performances de dessalement, des bénéfices et de la durabilité. Les applications des nanomatériaux et des nanocomposites dans le dessalement membranaire devraient favoriser des initiatives inexploitées et l'innovation dans les sciences fondamentales, l'ingénierie et la technologie pour diriger la nouvelle vague de technologie de pointe de dessalement membranaire durable. El desarrollo multidisciplinario, innovador y de altos valores de sistemas de separación de alto rendimiento, rentables y ambientalmente aceptables es muy deseado para abordar los desafíos de sostenibilidad que enfrenta la tecnología de desalinización actual. Debido a su versatilidad y su inmenso potencial para desarrollar innovaciones científicas y técnicas, la nanotecnología es probablemente una de las estrategias más destacadas que ha ganado un creciente reconocimiento científico y público para proporcionar soluciones que puedan ampliar los límites de la sostenibilidad en la tecnología de desalinización por membrana. Esta breve revisión proporciona una breve visión de los roles y las perspectivas de la nanotecnología, en particular la tecnología de membrana nanohabilitada, para servir como un elemento clave para ofrecer soluciones viables para el desarrollo sostenible en la tecnología de desalinización por membrana. La contribución también destaca las estrategias para transformar el riesgo y los desafíos de esta tecnología de vanguardia en una ventaja competitiva con el fin de impulsar de manera oportuna y eficiente los valores para mejorar el rendimiento, las ganancias y la sostenibilidad de la desalinización. Se prevé que las aplicaciones de nanomateriales y nanocompuestos en la desalinización por membrana fomenten iniciativas e innovaciones sin explotar en ciencia, ingeniería y tecnología fundamentales para encabezar la nueva ola de tecnología de desalinización por membrana sostenible de vanguardia. Multidisciplinary, innovative and high values development of high performance, cost-effective and environmentally acceptable separation systems is highly desired to tackle the sustainability challenges that facing current desalination technology. Owing to their versatility and immense potentials to evolve scientific and technical innovations, nanotechnology is probably one of the most prominent strategies that has gained growing scientific and public recognition to provide solutions that can extend the limits of sustainability in membrane desalination technology. This short review provides a brief insight into the roles and prospective of nanotechnology, particularly the nano-enabled membrane technology, to serve as a key element to render feasible solutions for sustainable development in membrane desalination technology. The contribution also highlights the strategies of transforming risk and challenges of this cutting edge technology into competitive advantage in order to timely and efficiently drive values in enhancing the desalination performance, profits and sustainability. The applications of nanomaterials and nanocomposite in membrane desalination are anticipated to foster untapped initiatives and innovation in fundamental science, engineering and technology to spearhead the new wave of leading edge sustainable membrane desalination technology. هناك رغبة كبيرة في تطوير أنظمة فصل عالية الأداء وفعالة من حيث التكلفة ومقبولة بيئيًا متعددة التخصصات ومبتكرة وذات قيم عالية لمعالجة تحديات الاستدامة التي تواجه تكنولوجيا تحلية المياه الحالية. بسبب تنوعها وإمكاناتها الهائلة لتطوير الابتكارات العلمية والتقنية، ربما تكون تقنية النانو واحدة من أبرز الاستراتيجيات التي اكتسبت اعترافًا علميًا وعامًا متزايدًا لتوفير حلول يمكن أن توسع حدود الاستدامة في تكنولوجيا تحلية المياه الغشائية. توفر هذه المراجعة القصيرة نظرة موجزة على أدوار وآفاق تكنولوجيا النانو، وخاصة تكنولوجيا الأغشية التي تدعم النانو، لتكون بمثابة عنصر رئيسي لتقديم حلول مجدية للتنمية المستدامة في تكنولوجيا تحلية المياه بالغشاء. كما تسلط المساهمة الضوء على استراتيجيات تحويل مخاطر وتحديات هذه التكنولوجيا المتطورة إلى ميزة تنافسية من أجل دفع القيم في الوقت المناسب وبكفاءة في تعزيز أداء تحلية المياه والأرباح والاستدامة. من المتوقع أن تؤدي تطبيقات المواد النانوية والمركبات النانوية في تحلية المياه بالغشاء إلى تعزيز المبادرات غير المستغلة والابتكار في العلوم الأساسية والهندسة والتكنولوجيا لقيادة الموجة الجديدة من تكنولوجيا تحلية المياه بالغشاء المستدامة الرائدة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2015.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.desal.2015.06.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Saoud A. Al-Janahi;
Omar Ellabban;Saoud A. Al-Janahi
Saoud A. Al-Janahi in OpenAIRESami G. Al-Ghamdi;
Sami G. Al-Ghamdi
Sami G. Al-Ghamdi in OpenAIREIssues like air pollution and high CO2rates are forcing the government of Qatar to mitigate these pollution rates as Qatar is considered the highest country that has can emissions per capita. As a result, huge efforts are executed to reduce these high rates of pollution so many renewable technologies projects are introduced, and solar PV plant is a major one. In this paper, Doha metro project is taken as a case study to implement a hybrid system within one of the metro stations to assess the economic profitability of it and then it can be a proposal for the country of Qatar to implement such a hybrid system within the governmental projects to mitigate the pollution rate. The methodology adopted in this paper is to evaluate the profitability of the hybrid system proposed by using HOMER software where it can model, simulate and optimize the proposed system with the desired components. Main finding is that due to the low electricity tariffs with and without the governmental subsidies, the implementation of PV system in Qatar is not economically feasible unless the PV system capacity is enlarged into a big scale or the tariff prices being increased with Carbon tax regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors:Mohammad Zaher Serdar;
Mohammad Zaher Serdar
Mohammad Zaher Serdar in OpenAIRESalah Basem Ajjur;
Salah Basem Ajjur
Salah Basem Ajjur in OpenAIRESami G. Al-Ghamdi;
Sami G. Al-Ghamdi
Sami G. Al-Ghamdi in OpenAIREdoi: 10.3390/su14159792
Over the past decade, the adverse impacts of climate change and excessive urbanization have contributed to several unfamiliar and costly floods in the Gulf Cooperation Council (GCC), especially in Qatar. With limited historical rainfall records and unprecedented precipitation intensities impacting the efficiency of hydrological models, the multi-criteria decision analysis (MCDA) presents a suitable alternative approach to assess and identify flood-susceptible areas. In this study, we applied MCDA to several factors that contribute to flood susceptibility, namely: elevation, slope, groundwater depth, distance to a drainage system, and land use. These criteria were assigned different weights based on their contribution and previous literature and later underwent a sensitivity analysis. The study’s results correlate well with recent flooding events, proving the method’s efficiency in identifying hotspots. This study is expected to provide a rapid tool to support the decision-making process for future urban expansion, sustainable development, and resilience planning in Qatar.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159792&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV Authors:Yusuf Bicer;
Yusuf Bicer
Yusuf Bicer in OpenAIREMohammed Al-Breiki;
Mohammed Al-Breiki
Mohammed Al-Breiki in OpenAIREAbstract Countries are under increasing pressure to reduce greenhouse gas emissions as an act upon the Paris Agreement. The essential emission reductions can be achieved by environmentally friendly solutions, in particular, the introduction of low carbon or carbon-free fuels. This study presents a comparative life cycle assessment of various energy carriers namely; liquefied natural gas, methanol, dimethyl ether, liquid hydrogen and liquid ammonia that are produced from natural gas or renewables to investigate greenhouse gas emissions generated from the complete life cycle of energy carriers accounting for the leaks as well as boil-off gas occurring during storage and transportation. The entire fuel life cycle is considered consisting of production, storage, transportation via an ocean tanker to different distances, and finally utilization in an internal combustion engine of a road vehicle. The results show that using natural gas as a feedstock, total greenhouse gas emissions during production, ocean transportation (over 20,000 nmi) by a heavy fuel oil-fueled ocean tanker, and utilization in an internal combustion engine are 73.96, 95.73, 93.76, 50.83, and 100.54 g CO2 eq. MJ−1 for liquified natural gas, methanol, dimethyl ether, liquid hydrogen, and liquid ammonia, respectively. Liquid hydrogen produced from solar electrolysis is the cleanest energy carrier (42.50 g CO2 eq. MJ−1 fuel). Moreover, when liquid ammonia is produced via photovoltaic-based electrolysis (60.76 g CO2 eq. MJ−1 fuel), it becomes cleaner than liquified natural gas. Although producing methanol and dimethyl ether from biomass results in a large reduction in total greenhouse gas emissions compared to conventional methanol and dimethyl ether production, with a value of 73.96 g CO2 eq. per MJ, liquified natural gas still represents a cleaner option than methanol and dimethyl ether considering the full life cycle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.123481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV pmid: 33839606
There is an increasing demand for clean water as the population of the earth is exponentially increasing. Many countries are facing water shortage problems, which are bound to become more prevalent in upcoming years. Therefore, it is necessary to investigate sustainable methods to produce clean water for drinking, irrigation, agriculture and domestic use. Electrodialysis uses electricity and specialized membranes to separate ionic substances from water. This practice can be used for desalination and wastewater treatment. To make the process more sustainable, electrodialysis can be coupled with renewable sources of energy such as solar and wind power. Photo-electrodialysis and photovoltaic-electrodialysis are two methods commonly used to couple solar energy with the electrodialysis process. However, these processes are dependent on the availability of sunlight and wind as weather conditions and the positioning of the sun vary by time. Electrodialysis is more favourable for brackish water desalination instead of seawater desalination as it has a lower energy requirement. Desalinating brackish water (1000-5000 ppm) has an energy requirement in the range of 0.4-4 kWh/m3. This review paper summarizes the fundamental concepts of electrodialysis technology and its integration with renewable energy sources such as photo electrodialysis, photovoltaic assisted electrodialysis, reversible electrodialysis/electrodialysis and wind energy-driven electrodialysis. Some aspects that have been considered are the freshwater capacity, specific energy and costs of the hybrid systems.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.112496&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors:Mahmoud M. El-Halwagi;
Mahmoud M. El-Halwagi
Mahmoud M. El-Halwagi in OpenAIREPatrick Linke;
Sabla Y. Alnouri; Sabla Y. Alnouri; +1 AuthorsPatrick Linke
Patrick Linke in OpenAIREMahmoud M. El-Halwagi;
Mahmoud M. El-Halwagi
Mahmoud M. El-Halwagi in OpenAIREPatrick Linke;
Sabla Y. Alnouri; Sabla Y. Alnouri;Patrick Linke
Patrick Linke in OpenAIREMirko Stijepovic;
Mirko Stijepovic
Mirko Stijepovic in OpenAIREdoi: 10.1002/ep.12364
Studies involving the design of interplant water networks have received significant attention over the past few years. Many methods have been developed to assist in obtaining efficient water reuse network design schemes, mainly using fundamental concepts of water integration. Our recent work has presented the importance of considering spatial constraints in the form of utility corridor availability, when identifying cost‐effective interplant water network arrangements in industrial zones (Alnouri et al., [2014]: Clean Technologies and Environmental Policy 16, 1637–1659). This article extends the scope of our previous work by enabling the identification of new corridor locations, which could potentially be used alongside existing utility infrastructure. We present an optimization framework that allows unutilized areas of land within industrial zones to be sectioned off and added as optional transportation channels, together with existing utility corridor regions, in the course of attaining cost‐effective interplant water network designs. The methodology entails that identification of optimal wastewater reuse schemes among various processing entities, by exploring options for enhanced utility corridors. As an illustration, several cases that utilize an assumed layout for an industrial zone have been carried out, in which a number of unutilized regions of land were identified to exist. Several opportunities that allow for potential corridor additions onto existing corridor infrastructure, through the exploitation of unutilized regions of land within the plot, were explored. A number of improvements in the water network designs obtained are highlighted for the different case scenarios that have been investigated, using the proposed approach. © 2016 American Institute of Chemical Engineers Environ Prog, 35: 1492–1511, 2016
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 2 Powered bymore_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.12364&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV Authors:Manal AlShafi;
Manal AlShafi
Manal AlShafi in OpenAIREYusuf Bicer;
Yusuf Bicer
Yusuf Bicer in OpenAIREEnergy storage systems critically assist in the implementation of renewable energy sources. However, greenhouse gas emissions associated with the energy storage methods have received insufficient attention, especially for arid climate implementation. This paper considers three energy storage techniques that can be suitable for hot arid climates namely; compressed air energy storage, vanadium redox flow battery, and molten salt thermal storage and performs a comprehensive life cycle assessment analysis to comparatively evaluate the environmental impacts per kWh of energy. The results show that, when solar photovoltaic electricity is stored, the redox-flow battery has the highest global warming potential, corresponding to 0.121 kg CO2 eq./kWh, whereas the molten salt has the least with a value of 0.0306 kg CO2 eq./kWh. In contrast, the lowest ozone layer depletion is observed for the compressed air storage unit with a value of 7.24×10−13kg R11 eq./kWh. In sensitivity analysis, it is found that using solar photovoltaic electricity for the considered energy storage methods rather than grid electricity critically reduces the associated environmental impacts, emphasizing the importance of implementing more renewables in the grid mix. The global warming potentials of compressed air and vanadium redox flow battery decrease by 0.599 and 0.420 kg CO2 eq,/kWh, respectively in case photovoltaic electricity is stored instead of grid electricity. It is also found that the production stage of the storage systems accounts for the highest share of carbon footprint.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.09.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.09.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:Elsevier BV Authors:Hilman Ibnu Mahdi;
Hilman Ibnu Mahdi
Hilman Ibnu Mahdi in OpenAIREAlireza Bazargan;
Alireza Bazargan
Alireza Bazargan in OpenAIREGordon McKay;
Gordon McKay
Gordon McKay in OpenAIRENur Izyan Wan Azelee;
+1 AuthorsNur Izyan Wan Azelee
Nur Izyan Wan Azelee in OpenAIREHilman Ibnu Mahdi;
Hilman Ibnu Mahdi
Hilman Ibnu Mahdi in OpenAIREAlireza Bazargan;
Alireza Bazargan
Alireza Bazargan in OpenAIREGordon McKay;
Gordon McKay
Gordon McKay in OpenAIRENur Izyan Wan Azelee;
Nur Izyan Wan Azelee
Nur Izyan Wan Azelee in OpenAIRELucas Meili;
Lucas Meili
Lucas Meili in OpenAIREAbstract Worldwide consumption of energy produced from fossil fuels is forecasted to grow. This trend leads to both environmental pollution and the depletion of fossil fuel resources. Green diesel is a suitable candidate to substitute petroleum based-diesel due to its plentiful raw materials, non-polluting production process, and cost-effectiveness. Green diesel production is seen as simple, efficient, and relatively clean process. Deoxygenation (DO) is crowned as the best available technology to produce green diesel from palm fatty acid distillate (a side product of palm oil production) and other oils using heterogeneous catalysts such as zeolites. The capability of catalysts can be improved by optimizing operating parameters, treating and modifying catalysts and with the use of nano-sized catalytic materials. These activities contribute to stronger and more active Bronsted-Lewis acid-base sites and enlarged crystallite sizes, which improve the DO efficiency, selectivity, and reusability, to produce high-grade green diesel with less oxygen content.
Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering Research and DesignArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cherd.2021.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu