- home
- Advanced Search
- Energy Research
- 13. Climate action
- RO
- Energy Research
- 13. Climate action
- RO
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Calin-Cristian Cormos;Abstract Large scale biomass utilisation in energy-related applications is of paramount importance to reduce the fossil CO 2 emissions. At European level, about a third of energy consumption is expected to be covered by renewables in the next 15 years. In addition, the CO 2 emissions need to be reduced by 40% compared to the 1990 level. Within this context, innovative energy-efficient low carbon technologies have to be developed. Chemical looping is a promising conversion option to deliver reduced energy and cost penalties for CO 2 capture. This paper assesses biomass direct chemical looping (BDCL) concept for hydrogen and power co-production. The concept is illustrated using an ilmenite-based system to produce 400–500 MW net power with flexible hydrogen output (up to 200 MW th ). The performances are assessed through computational methods, with the mass and energy balances being used for in-depth techno-economic analysis. The biomass direct chemical looping delivers both high energy efficiencies (~ 42% net efficiency) with almost total carbon capture rate (> 99%) compared to other CO 2 capture options (e.g. gas–liquid absorption). The economic parameters show also a reduced CO 2 capture cost penalty for biomass direct chemical looping technology compared to gas–liquid absorption (e.g. 7% reduction of specific capital investment).
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nicoleta Ungureanu; Valentin Vlăduț; Sorin-Ștefan Biriș;doi: 10.3390/su141711089
Sugarcane is a lignocellulosic crop and the juice extracted from its stalks provides the raw material for 86% of sugar production. Globally, sugarcane processing to obtain sugar and/or ethanol generates more than 279 million tons of solid and liquid waste annually, as well as by-products; namely, straws, bagasse, press mud, wastewater, ash from bagasse incineration, vinasse from ethanol distillation, and molasses. If not properly managed, this waste will pose risks to both environmental factors and human health. Lately, valorization of waste has gained momentum, having an important contribution to the fulfillment of policies and objectives related to sustainable development and circular bioeconomy. Various technologies are well-established and implemented for the valorization of waste and by-products from sugarcane processing, while other innovative technologies are still in the research and development stage, with encouraging prospects. We propose a sustainable sugarcane processing flow and present an analysis of the physico-chemical characteristics of generated wastes and by-products. We emphasize the available possibilities of valorizing each waste and by-product, considering that they are important biomass resources for obtaining biofuels and a wide range of other products with added value, which will contribute to the sustainability of the environment, agriculture, and human health worldwide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:OAIMDD - EcoZone Publishing House Authors: Dan Gavrilescu;Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation. The paper reviews the current state and tendencies in using as a fuel of solid wastes generated in pulp and paper mills. A description of biomass-derived wastes regarding their opportunity to be used for energy recovery is presented. The heating properties of wood wastes, rejects from recycled paper processing, paper sludge, and low-quality recovered paper grades are discussed. Some aspects of emission of greenhouse gases (GHG) are also presented.
Environmental Engine... arrow_drop_down Environmental Engineering and Management JournalArticle . 2008 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30638/eemj.2008.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Engine... arrow_drop_down Environmental Engineering and Management JournalArticle . 2008 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30638/eemj.2008.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 BelgiumPublisher:MDPI AG Ioana Ancuta Iancu; Patrick Hendrick; Dan Doru Micu; Denisa Stet; Levente Czumbil; Stefan Dragos Cirstea;The decrease in greenhouse gas emissions by passenger cars is one of the key factors for climate protection measures. Besides EU strategies for low-emission mobility, policy makers must consider the behavioural factors of buyers. This study aims to cover this gap by investigating the relation between the national cultural dimensions (Hofstede model) and car adoption by fuel type in EU countries. This could help car sellers to find better solutions for advertising cars with medium and low greenhouse gas emissions. To find better ways to increase the usage of medium- and low-emission cars using targeted advertising, correlations and a multiple regression analysis were used. The results show that the consumer preference for one type of fuel is correlated with at least one of Hofstede’s six cultural dimensions: the power distance index; individualism versus collectivism; masculinity versus femininity; the uncertainty avoidance index; long-term orientation versus short-term normative orientation; indulgence versus restraint. The major conclusion of the study underlines that, with increases in the individualism versus collectivism and indulgence versus restraint scores, the usage of low- and medium-emission cars also increases, and with the increase in the power distance and uncertainty avoidance index, the usage of low- and medium emission cars decreases. At the same time, the driving preference for low- and medium-emission vehicles decreases with the tendency towards collectivism and restraint of EU countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Anca Mehedintu; Mihaela Sterpu; Georgeta Soava;doi: 10.3390/su10051515
European Union Directive 2009/28/EC established that the share of renewable energy in the final energy consumption should reach a target of 20% by 2020 in European Union (EU) countries. This study analyses the tendency of this share using data for EU 28, taken from the Eurostat database for the period 1995–2016. First, after a brief statistical and economic analysis of the three macroeconomic indicators at EU level, five regression models (polynomial, ARIMA) were used to estimate the evolution of the share of renewable energy consumption into the final energy consumption, all of them showing an increasing trend for this indicator. The positive impact of the EU Directive in increasing this share was proved by means of a perturbed regression model. Forecasts of this share for the 2020 horizon were obtained, all showing that the EU target is yet to be reached. Secondly, four groups of EU-countries were considered, according to the final energy consumption. Empirical estimations of renewable energy share into the final energy consumption showed increasing trend for all groups, while providing forecasts quite different from the EU ones. Also, economic interpretations of the results are performed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Hindawi Limited Ma, T.Y.; Zhang, Z.Y.; Cao, J.L.; Andronic, L.; Ma, Y.; Liu, L.;doi: 10.1155/2014/356864
handle: 1959.3/457991 , 2440/99112
1 School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China 3 Centre of Renewable Energy Systems and Recycling, Transilvania University of Brasov, Eroilor 29, 500036 Brasov, Romania 4College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, Liaoning 121013, China 5 School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
Swinburne University... arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/1959.3/457991Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2440/99112Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/356864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Swinburne University... arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/1959.3/457991Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2440/99112Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/356864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Teodor Rusu;AbstractThe objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha−1 for maize, 6.49 MJ ha−1 for soybean, and 5.66 MJ ha−1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2095-6339(15)30057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2095-6339(15)30057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | BE-RuralEC| BE-RuralAuthors: Mihaela Simionescu; Carmen Beatrice Păuna; Mihaela-Daniela Vornicescu Niculescu;doi: 10.3390/en14092363
Considering the necessity of achieving economic development by keeping the quality of the environment, the aim of this paper is to study the impact of economic growth on GHG emissions in a sample of Central and Eastern European (CEE) countries (V4 countries, Bulgaria and Romania) in the period of 1996–2019. In the context of dynamic ARDL panel and environmental Kuznets curve (EKC), the relationship between GHG and GDP is N-shaped. A U-shaped relationship was obtained in the renewable Kuznets curve (RKC). Energy consumption, domestic credit to the private sector, and labor productivity contribute to pollution, while renewable energy consumption reduces the GHG emissions. However, more efforts are required for promoting renewable energy in the analyzed countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Rodica Frunzulica; Nicolae Bajenaru; Andrei Damian;AbstractThis paper presents the results from simulation work regarding the design of a net zero energy office building with a mixed-mode ventilation system which assures the thermal comfort of the occupants according to the ASHRAE 55/2010 Standard, with a rational consumption of energy and a minimal environmental impact. This was a particular difficult task as the studied city, New Delhi, is one of the most polluted in the world. The study relied on the use of easily accessible building materials and customary Air Conditioning (AC) equipment, in order to meet the requirements. For this purpose, three different AC systems had been selected: a Chilled Beams (CB) system, a Fan Coil Units (FCU) system, and a Variable Refrigerant Flow (VRF) system. All the simulations have been performed within the Design Builder platform, a user-friendly interface of the Energy Plus software. The chilled beams AC system came on top of the energy performance ranking, with 4,6% less energy consumption than the fan coil units system and 2,3% less than the variable refrigerant system, for a payback period of 11,3 years. As for the energy production, 160 modules of photovoltaic panels with a total energy yield of 64260 [kWh/year] were used to cover the building electrical needs (lighting and appliances).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Pislaru Marius; Diana Trandabat; Alexandru Trandabat;AbstractEnvironmental proactivity is determined by several drivers, each of them being able to model the degree of corporate responses to environmental challenge. For more than twenty years Climate Change issues are still crossing both political and economic agenda. The increasing attention regarding environmental problems calls the company to react and adapt its strategy to this new issue. Despite the fact that in the next future the eco revolution would affect every business activity, there exist some industries with high environmental impact which more liable for such change. The aim of the paper is to present a fuzzy rule based model to assess a corporate environmental performance. In order to cope with this challenge the article illustrates an example from food industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcbee.2013.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcbee.2013.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Calin-Cristian Cormos;Abstract Large scale biomass utilisation in energy-related applications is of paramount importance to reduce the fossil CO 2 emissions. At European level, about a third of energy consumption is expected to be covered by renewables in the next 15 years. In addition, the CO 2 emissions need to be reduced by 40% compared to the 1990 level. Within this context, innovative energy-efficient low carbon technologies have to be developed. Chemical looping is a promising conversion option to deliver reduced energy and cost penalties for CO 2 capture. This paper assesses biomass direct chemical looping (BDCL) concept for hydrogen and power co-production. The concept is illustrated using an ilmenite-based system to produce 400–500 MW net power with flexible hydrogen output (up to 200 MW th ). The performances are assessed through computational methods, with the mass and energy balances being used for in-depth techno-economic analysis. The biomass direct chemical looping delivers both high energy efficiencies (~ 42% net efficiency) with almost total carbon capture rate (> 99%) compared to other CO 2 capture options (e.g. gas–liquid absorption). The economic parameters show also a reduced CO 2 capture cost penalty for biomass direct chemical looping technology compared to gas–liquid absorption (e.g. 7% reduction of specific capital investment).
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2015.04.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nicoleta Ungureanu; Valentin Vlăduț; Sorin-Ștefan Biriș;doi: 10.3390/su141711089
Sugarcane is a lignocellulosic crop and the juice extracted from its stalks provides the raw material for 86% of sugar production. Globally, sugarcane processing to obtain sugar and/or ethanol generates more than 279 million tons of solid and liquid waste annually, as well as by-products; namely, straws, bagasse, press mud, wastewater, ash from bagasse incineration, vinasse from ethanol distillation, and molasses. If not properly managed, this waste will pose risks to both environmental factors and human health. Lately, valorization of waste has gained momentum, having an important contribution to the fulfillment of policies and objectives related to sustainable development and circular bioeconomy. Various technologies are well-established and implemented for the valorization of waste and by-products from sugarcane processing, while other innovative technologies are still in the research and development stage, with encouraging prospects. We propose a sustainable sugarcane processing flow and present an analysis of the physico-chemical characteristics of generated wastes and by-products. We emphasize the available possibilities of valorizing each waste and by-product, considering that they are important biomass resources for obtaining biofuels and a wide range of other products with added value, which will contribute to the sustainability of the environment, agriculture, and human health worldwide.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141711089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:OAIMDD - EcoZone Publishing House Authors: Dan Gavrilescu;Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation. The paper reviews the current state and tendencies in using as a fuel of solid wastes generated in pulp and paper mills. A description of biomass-derived wastes regarding their opportunity to be used for energy recovery is presented. The heating properties of wood wastes, rejects from recycled paper processing, paper sludge, and low-quality recovered paper grades are discussed. Some aspects of emission of greenhouse gases (GHG) are also presented.
Environmental Engine... arrow_drop_down Environmental Engineering and Management JournalArticle . 2008 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30638/eemj.2008.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Engine... arrow_drop_down Environmental Engineering and Management JournalArticle . 2008 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30638/eemj.2008.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 BelgiumPublisher:MDPI AG Ioana Ancuta Iancu; Patrick Hendrick; Dan Doru Micu; Denisa Stet; Levente Czumbil; Stefan Dragos Cirstea;The decrease in greenhouse gas emissions by passenger cars is one of the key factors for climate protection measures. Besides EU strategies for low-emission mobility, policy makers must consider the behavioural factors of buyers. This study aims to cover this gap by investigating the relation between the national cultural dimensions (Hofstede model) and car adoption by fuel type in EU countries. This could help car sellers to find better solutions for advertising cars with medium and low greenhouse gas emissions. To find better ways to increase the usage of medium- and low-emission cars using targeted advertising, correlations and a multiple regression analysis were used. The results show that the consumer preference for one type of fuel is correlated with at least one of Hofstede’s six cultural dimensions: the power distance index; individualism versus collectivism; masculinity versus femininity; the uncertainty avoidance index; long-term orientation versus short-term normative orientation; indulgence versus restraint. The major conclusion of the study underlines that, with increases in the individualism versus collectivism and indulgence versus restraint scores, the usage of low- and medium-emission cars also increases, and with the increase in the power distance and uncertainty avoidance index, the usage of low- and medium emission cars decreases. At the same time, the driving preference for low- and medium-emission vehicles decreases with the tendency towards collectivism and restraint of EU countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Anca Mehedintu; Mihaela Sterpu; Georgeta Soava;doi: 10.3390/su10051515
European Union Directive 2009/28/EC established that the share of renewable energy in the final energy consumption should reach a target of 20% by 2020 in European Union (EU) countries. This study analyses the tendency of this share using data for EU 28, taken from the Eurostat database for the period 1995–2016. First, after a brief statistical and economic analysis of the three macroeconomic indicators at EU level, five regression models (polynomial, ARIMA) were used to estimate the evolution of the share of renewable energy consumption into the final energy consumption, all of them showing an increasing trend for this indicator. The positive impact of the EU Directive in increasing this share was proved by means of a perturbed regression model. Forecasts of this share for the 2020 horizon were obtained, all showing that the EU target is yet to be reached. Secondly, four groups of EU-countries were considered, according to the final energy consumption. Empirical estimations of renewable energy share into the final energy consumption showed increasing trend for all groups, while providing forecasts quite different from the EU ones. Also, economic interpretations of the results are performed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051515&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 AustraliaPublisher:Hindawi Limited Ma, T.Y.; Zhang, Z.Y.; Cao, J.L.; Andronic, L.; Ma, Y.; Liu, L.;doi: 10.1155/2014/356864
handle: 1959.3/457991 , 2440/99112
1 School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia 2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China 3 Centre of Renewable Energy Systems and Recycling, Transilvania University of Brasov, Eroilor 29, 500036 Brasov, Romania 4College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou, Liaoning 121013, China 5 School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
Swinburne University... arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/1959.3/457991Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2440/99112Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/356864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Swinburne University... arrow_drop_down Swinburne University of Technology: Swinburne Research BankArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/1959.3/457991Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2440/99112Data sources: Bielefeld Academic Search Engine (BASE)International Journal of PhotoenergyArticle . 2014 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2014/356864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Teodor Rusu;AbstractThe objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha−1 for maize, 6.49 MJ ha−1 for soybean, and 5.66 MJ ha−1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.
International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2095-6339(15)30057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert International Soil a... arrow_drop_down International Soil and Water Conservation ResearchArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Soil and Water Conservation ResearchArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s2095-6339(15)30057-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:EC | BE-RuralEC| BE-RuralAuthors: Mihaela Simionescu; Carmen Beatrice Păuna; Mihaela-Daniela Vornicescu Niculescu;doi: 10.3390/en14092363
Considering the necessity of achieving economic development by keeping the quality of the environment, the aim of this paper is to study the impact of economic growth on GHG emissions in a sample of Central and Eastern European (CEE) countries (V4 countries, Bulgaria and Romania) in the period of 1996–2019. In the context of dynamic ARDL panel and environmental Kuznets curve (EKC), the relationship between GHG and GDP is N-shaped. A U-shaped relationship was obtained in the renewable Kuznets curve (RKC). Energy consumption, domestic credit to the private sector, and labor productivity contribute to pollution, while renewable energy consumption reduces the GHG emissions. However, more efforts are required for promoting renewable energy in the analyzed countries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14092363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Rodica Frunzulica; Nicolae Bajenaru; Andrei Damian;AbstractThis paper presents the results from simulation work regarding the design of a net zero energy office building with a mixed-mode ventilation system which assures the thermal comfort of the occupants according to the ASHRAE 55/2010 Standard, with a rational consumption of energy and a minimal environmental impact. This was a particular difficult task as the studied city, New Delhi, is one of the most polluted in the world. The study relied on the use of easily accessible building materials and customary Air Conditioning (AC) equipment, in order to meet the requirements. For this purpose, three different AC systems had been selected: a Chilled Beams (CB) system, a Fan Coil Units (FCU) system, and a Variable Refrigerant Flow (VRF) system. All the simulations have been performed within the Design Builder platform, a user-friendly interface of the Energy Plus software. The chilled beams AC system came on top of the energy performance ranking, with 4,6% less energy consumption than the fan coil units system and 2,3% less than the variable refrigerant system, for a payback period of 11,3 years. As for the energy production, 160 modules of photovoltaic panels with a total energy yield of 64260 [kWh/year] were used to cover the building electrical needs (lighting and appliances).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.12.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Pislaru Marius; Diana Trandabat; Alexandru Trandabat;AbstractEnvironmental proactivity is determined by several drivers, each of them being able to model the degree of corporate responses to environmental challenge. For more than twenty years Climate Change issues are still crossing both political and economic agenda. The increasing attention regarding environmental problems calls the company to react and adapt its strategy to this new issue. Despite the fact that in the next future the eco revolution would affect every business activity, there exist some industries with high environmental impact which more liable for such change. The aim of the paper is to present a fuzzy rule based model to assess a corporate environmental performance. In order to cope with this challenge the article illustrates an example from food industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcbee.2013.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apcbee.2013.05.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu