- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- Open Source
- Embargo
- CN
- CA
- RU
- Energy Research
- Open Access
- Restricted
- Open Source
- Embargo
- CN
- CA
- RU
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Authors:
Mukhtar Ahmed; Claudio O. Stöckle;Mukhtar Ahmed
Mukhtar Ahmed in OpenAIRE
Roger Nelson; Stewart S. Higgins; +2 AuthorsRoger Nelson
Roger Nelson in OpenAIRE
Mukhtar Ahmed; Claudio O. Stöckle;Mukhtar Ahmed
Mukhtar Ahmed in OpenAIRE
Roger Nelson; Stewart S. Higgins;Roger Nelson
Roger Nelson in OpenAIRE
Shakeel Ahmad; Shakeel Ahmad
Shakeel Ahmad in OpenAIRE
Muhammad Ali Raza; Muhammad Ali Raza
Muhammad Ali Raza in OpenAIREpmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:ANR | VIRGOANR| VIRGOAuthors:
Mathias, Jean-Denis; Anderies, J.M.; Janssen, M.A.;Mathias, Jean-Denis
Mathias, Jean-Denis in OpenAIREAbstractThe planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:MDPI AG Authors:
Baohua Xie; Jiangxin Gu;Baohua Xie
Baohua Xie in OpenAIRE
Junbao Yu; Guangxuan Han; +3 AuthorsJunbao Yu
Junbao Yu in OpenAIRE
Baohua Xie; Jiangxin Gu;Baohua Xie
Baohua Xie in OpenAIRE
Junbao Yu; Guangxuan Han;Junbao Yu
Junbao Yu in OpenAIRE
Xunhua Zheng; Yu Xu; Haitao Lin;Xunhua Zheng
Xunhua Zheng in OpenAIREdoi: 10.3390/atmos8100181
Land use changes from cropland to orchards in Eastern China have raised serious concerns about the regional nitrogen (N) cycle and greenhouse gas balance. We measured soil nitrous oxide (N2O) emissions and methane (CH4) uptake using manual static chambers in an apple orchard. The primary aims were to assess the effect of N fertilizer application on gas fluxes and quantify the site-specific N2O emission factor (EFd). Field experiments were arranged in a randomized block design with three N input rates (0, 800 and 2600/2000 kg N ha−1 year−1). We found that orchard soils were a negligible CH4 sink (−1.1 to −0.4 kg C ha−1 year−1). Annual N2O emissions responded positively to N input rates, ranging from 34.1 to 60.3 kg N ha−1 year−1. EFd ranged from 1.00% to 1.65% with a mean of 1.34%. The extremely large background emissions of N2O (34.1–34.3 kg N ha−1 year−1) most likely originated from nitrate accumulation in the soil profile because of historical overuse of N fertilizer. We conclude that (1) site-specific EFd is suitable for assessing regional direct N2O emissions from upland orchards; and (2) conventional fertilization regimes must be avoided, and reduced N input rates are recommended in the study region.
Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Atmosphere arrow_drop_down AtmosphereOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2073-4433/8/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:
Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; +3 AuthorsJian Liao
Jian Liao in OpenAIRE
Jian Liao; Haojie Wang; Shaojun Xiao; Zhaoying Guan; Haomiao Zhang; Henri J. Dumont;Jian Liao
Jian Liao in OpenAIRE
Bo-Ping Han; Bo-Ping Han
Bo-Ping Han in OpenAIRENeurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to understand the ecological properties of its habitats and specie’s range shift under climate change. In the present study, we modeled its potential distribution under one historical, current, and four future scenarios. We evaluated the importance of the factors that shape its distribution and habitats and predicted the historical and current core spatial distributions and their shifting in the future. Two historical core distribution areas were identified: the inland region of the Bay of Bengal and south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos, Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka, Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca. 3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below 1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of driest quarter, and seasonality of precipitation are important factors shaping the species distribution. Our study provides systematic information on habitats and geographical distribution, which is useful for the conservation of N. chinensis.
Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biology arrow_drop_down BiologyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2079-7737/11/6/868/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeAuthors: Leifsson, Christopher; Buras, Allan;
Klesse, Stefan; Baittinger, Claudia; +52 AuthorsKlesse, Stefan
Klesse, Stefan in OpenAIRELeifsson, Christopher; Buras, Allan;
Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna;Klesse, Stefan
Klesse, Stefan in OpenAIRE
Biondi, Franco; Stajić, Branko;Biondi, Franco
Biondi, Franco in OpenAIRE
Budeanu, Marius; Čada, Vojtěch; Cavin, Liam;Budeanu, Marius
Budeanu, Marius in OpenAIRE
Claessens, Hugues; Claessens, Hugues
Claessens, Hugues in OpenAIRE
Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew;Čufar, Katarina
Čufar, Katarina in OpenAIRE
Hansen, Jon Kehlet; Hartl, Claudia;Hansen, Jon Kehlet
Hansen, Jon Kehlet in OpenAIRE
Huang, Weiwei; Janda, Pavel; Jump, Alistair;Huang, Weiwei
Huang, Weiwei in OpenAIRE
Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander;Kazimirović, Marko
Kazimirović, Marko in OpenAIRE
Latte, Nicolas; Latte, Nicolas
Latte, Nicolas in OpenAIRE
Lebourgeois, François; Leuschner, Christoph;Lebourgeois, François
Lebourgeois, François in OpenAIRE
Longares, Luis; Longares, Luis
Longares, Luis in OpenAIRE
Martinez del Castillo, Edurne; Martinez del Castillo, Edurne
Martinez del Castillo, Edurne in OpenAIRE
Menzel, Annette; Menzel, Annette
Menzel, Annette in OpenAIRE
Motta, Renzo; Motta, Renzo
Motta, Renzo in OpenAIRE
Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil;Muffler-Weigel, Lena
Muffler-Weigel, Lena in OpenAIRE
Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel;Petritan, Any Mary
Petritan, Any Mary in OpenAIRE
Roibu, Cǎtǎlin-Constantin; Roibu, Cǎtǎlin-Constantin
Roibu, Cǎtǎlin-Constantin in OpenAIRE
Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias;Rubio-Cuadrado, Álvaro
Rubio-Cuadrado, Álvaro in OpenAIRE
Camarero, J. Julio; Svoboda, Miroslav;Camarero, J. Julio
Camarero, J. Julio in OpenAIRE
Toromani, Elvin; Trotsiuk, Volodymyr;Toromani, Elvin
Toromani, Elvin in OpenAIRE
van der Maaten-Theunissen, Marieke; van der Maaten-Theunissen, Marieke
van der Maaten-Theunissen, Marieke in OpenAIRE
van der Maaten, Ernst; Weigel, Robert;van der Maaten, Ernst
van der Maaten, Ernst in OpenAIRE
Wilmking, Martin; Wilmking, Martin
Wilmking, Martin in OpenAIRE
Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;Zlatanov, Tzvetan
Zlatanov, Tzvetan in OpenAIREpmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors:
Zining Xiang; Zining Xiang
Zining Xiang in OpenAIRE
Yuyu Liu; Yongfei Fu; Yixiong Gao; +2 AuthorsYuyu Liu
Yuyu Liu in OpenAIRE
Zining Xiang; Zining Xiang
Zining Xiang in OpenAIRE
Yuyu Liu; Yongfei Fu; Yixiong Gao; Luxia Liu; Fuqiang Wang;Yuyu Liu
Yuyu Liu in OpenAIREAbstract Exploring the spatiotemporal variation characteristics of vegetation in the confluent area of water systems in western Jinan and its response mechanism to climatic factors is of great significance for the scientific evaluation of the benefits of the water system connectivity project and eco-environmental protection and can provide a reference for ecotourism development in the Jixi wetland park. Based on the Landsat series of images and meteorological data, this study used ENVI to interpret the normalized difference vegetation index (NDVI) of the confluent area from 2010 to 2021 and the spatiotemporal change characteristics and trends of NDVI were quantitatively analysed. The response of the growing-season NDVI (GSN) to climate factors and its time-lag effect were explored. The results showed that the overall change in the interannual NDVI in the confluent area from 2010 to 2021 was stable. The GSN in the confluent area was significantly positively correlated with precipitation, average temperature, and relative humidity in 37.64%, 25.52%, and 20.87% of the area respectively, and significantly negatively correlated with sunshine hours in 15.32% of the area. There was a time-lag effect on the response of the GSN to climate factors; the response to precipitation and sunshine hours lagged by one month, and the response to average temperature and relative humidity was longer.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Monitoring and AssessmentArticle . 2024 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Master thesis 2012Publisher:Wiley Climatic change has been observed in many locations and has been seen to have dramatic impact on a wide range of ecosystems. The traditional method to analyse trends in climatic series is regression analysis. Koenker and Bassett (1978) developed a regression-type model for estimating the functional relationship between predictor variables and any quantile in the distribution of the response variable. Quantile regression has received considerable attention in the statistical literature, but less so in the water resources literature. This study aims to apply quantile regression to problems in water resources and climate change studies. The core of the thesis is made up of three papers of which two have been published and one has been submitted. One paper presents a novel application of quantile regression to analyze the distribution of sea ice extent. Another paper investigates changes in temperature and precipitation extremes over the Canadian Prairies using quantile regression. The third paper presents a Bayesian model averaging method for variable selection adapted to quantile regression and analyzes the relationship of extreme precipitation with large-scale atmospheric variables. This last paper also develops a novel statistical downscaling model based on quantile regression. The various applications of quantile regression support the conclusion that the method is useful in climate change studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:
Shengyuan Li; Shengyuan Li
Shengyuan Li in OpenAIRE
Zhonghua Gou; Zhonghua Gou
Zhonghua Gou in OpenAIREdoi: 10.3390/land12101956
In the context of climate change and rural revitalization, numerous solar photovoltaic (PV) panels are being installed on village roofs and lands, impacting the enjoyment of the new rural landscape characterized by PV panels. However, the visual acceptance of PV panels in rural areas of China is not yet fully understood. This study aims to identify and correlate three key influential factors that contribute to the acceptance and appreciation of PV panels in China’s rural settings. A quasi-experiment was conducted, incorporating diverse landscapes into six rural settings, each containing both the original landscape and PV panels. The findings demonstrated that the original rural landscape was significantly more scenic than PV panels, and factors contributing to the appreciation of traditional landscapes, such as nostalgia, played a vital role in rejecting PV panels. Conversely, renewable energy-related factors, such as economic stakes and moral desirability, were found to contribute to the acceptance of PV panels. This study contributes to the strategic planning and design of solar PV panels in rural landscapes, taking into consideration social acceptance and local contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Botong Gao; Meng Chen;
Haichao Hao; Haichao Hao; +6 AuthorsHaichao Hao
Haichao Hao in OpenAIREBotong Gao; Meng Chen;
Haichao Hao; Haichao Hao; Haichao Hao; Yosuke Alexandre Yamashiki; Kanako Ishikawa; Chunmeng Jiao; Ji Cai;Haichao Hao
Haichao Hao in OpenAIRE
Sadaf Ismail; Sadaf Ismail
Sadaf Ismail in OpenAIRELake Biwa, Japan represents a crucial example of the complex climatic and anthropogenic drivers influencing lake ecological transformations, vital to informing Sustainable Development Goals globally. This study utilizes 2002–2022 Landsat, MODIS and in situ Lake Biwa monitoring data to analyze surface layer spatiotemporal dynamics across interrelated vegetation, water quality and meteorological indicators—encompassing Normalized Difference Vegetation Index (NDVI), nitrogen (N), phosphorus (P), chlorophyll-a (Chl) and water temperature (W-TEM). Upward NDVI raster trends were found over 20 years alongside prevalent N, P and Chl declines—although some increases did occur spatially in P and Chl—while W-TEM mostly rose lakewide. Southwest–northeast gradients typified distributions. Further attribution analyses revealed W-TEM as the primary N, P and Chl driver, while agricultural expansion and urbanization mediated crucial N and P changes. Moreover, wind speed (WS), Crop, W-TEM, minimum temperature (TMMN), Chl and N constituted top NDVI raster influence factors respectively. These novel integrated models quantifying Lake Biwa ecological responses to multifaceted environmental change provide new perspectives to inform sustainable management of Lake Biwa itself and critical freshwater resources worldwide.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG doi: 10.3390/su12104100
In the Hengduan Mountain region, soil erosion is the most serious ecological environmental problem. Understanding the impact mechanism of water yield and soil erosion is essential to optimize ecosystem management and improve ecosystem services. This study used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Revised Universal Soil Loss Equation (RUSLE) models to separate the relative contributions of land use and climate change to water yield and soil erosion. The results revealed that: (1) Although soil and water conservation has been strengthened in the past 25 years, both water yield and soil erosion increased from 2010 to 2015 due to the conversion of woodland to grassland, which indicates that continuous benefits after the implementation of ecological restoration projects were not obtained; (2) Climate change played a decisive role in water yield and soil erosion changes in the Hengduan Mountain region from 1990 to 2015, and soil erosion was not only related to the amount of precipitation but also closely related to precipitation intensity; (3) The contribution of land use and climate change to water yield was 26.94% and 73.06%, while for soil erosion, the contribution of land use and climate change was 16.23% and 83.77%, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4100/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/4100/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
