- home
- Advanced Search
- Energy Research
- SA
- Energy Research
- SA
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Siddique Akbar; Faisal Khan; Wasiq Ullah; Basharat Ullah; Ahmad H. Milyani; Abdullah Ahmed Azhari;doi: 10.3390/en15207531
Slotting effect in electric machines reduces flux per pole that effect magnetic flux density distribution in the air gap which induces harmonics in magnetic flux density causing flux pulsation, that in turn generates dominant torque pulsation in the form of cogging torque and torque ripples. To overcome the abovesaid demerits, a novel outer rotor field-excited flux-switching machine (OR-FSFSM) with a combined semi-closed and open slots stator is proposed in this study. The developed OR-FEFSM offers a high-power factor, due to the utilization of the semi-closed slot for armature coils. The open slot stator structure was chosen for the field excitation coil, which effectively suppresses leakage reluctance that causes flux pulsation. Thus, the influence of torque ripples is reduced, and the average torque is improved. In order to investigate the effectiveness of the proposed OR-FEFSM, a detailed study of stator slot and rotor pole combinations are performed. Based on simplified mathematical formulation, 12S/7P (stator slot/rotor poles), 12S/11P, 12S/13P, and 12S/17P are the most feasible combinations. Finite Element Analysis (FEA) based on comprehensive electromagnetic performance is performed on each combination, and found that 12S/13P offers the highest average torque of 4.62 Nm, whereas 3.72 Nm, 2.72Nm, and 1.68 Nm average torque is offered by 12S/17P, 12S/7P, and 12S/11P, respectively. Based on the initial analysis, 12S/13P was considered for further analysis and optimized using JMAG built-in Genetic Algorithm (GA). Moreover, thermal analysis was performed, and the proposed design was compared with the conventional design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Ziaul Islam; Faisal Khan; Basharat Ullah; Ahmad H. Milyani; Abdullah Ahmed Azhari;doi: 10.3390/en15207533
Axial flux permanent magnet (AFPM) machines are good candidates for electric vehicle applications due to their high torque density, improved efficiency, and better flux distribution; thus, they are often used. A dual-rotor single-stator AFPM machine with four differently shaped permanent magnet (PM) rotors is investigated. The main aim of this paper is to enhance the average torque while minimizing the cogging torque and torque ripples at the expense of low PM volume. The proposed machines are analyzed in terms of flux linkage, back-EMF, cogging torque, average torque, and torque ripples. The analysis reveals that the machine with an arc-shaped PM rotor performs better than the others. In addition, the trapozoidal arc-shaped PM used in the AFPM machine outperforms the hexagonal, skew arc, and traditional trapezoidal PMs. The torque density of the trapezoidal-shaped PM machine is 40.23 (KNm/m3), while that of the hexagonal shape is 32.46 (KNm/m3), that of the skew arc shape is 39.78 (KNm/m3), and that of the arc shape is 50.38 (KNm/m3).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Himayat Ullah Jan; Faisal Khan; Basharat Ullah; Muhammad Qasim; Ahmad H. Milyani; Abdullah Ahmed Azhari;doi: 10.3390/en15145275
This paper presents a novel linear hybrid excited flux switching permanent magnet machine (LHEFSPMM) with a crooked tooth modular stator. Conventional stators are made up of a pure iron core, which results in high manufacturing costs and increased iron core losses. Using a modular stator lowers the iron volume by up to 18% compared to a conventional stator, which minimizes the core losses and reduces the machine’s overall cost. A crooked angle is introduced to improve the flux linkage between the stator pole and the mover slot. Ferrite magnets are used with parallel magnetization to reduce the cost of the machine. Two-dimensional FEA is performed to analyze and evaluate various performance parameters of the proposed machine. Geometric optimization is used to optimize the split ratio (S.R) and winding slot area (Slotarea). Genetic algorithm (GA) is applied and is used to optimize stator tooth width (STW), space between the modules (SS), crooked angle (α), and starting angle (θ). The proposed model has a high thrust density (306.61 kN/m3), lower detent force (8.4 N), and a simpler design with higher efficiency (86%). The linear modular structure makes it a good candidate for railway transportation and electric trains. Thermal analysis of the machine is performed by FEA and then the results are validated by an LPMEC model. Overall, a very good agreement is observed between both the analyses, and relative percentage error of less than 3% is achieved, which is considerable since the FEA is in 3D while 2D temperature flow is considered in the LPMEC model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Basharat Ullah; Faisal Khan; Muhammad Qasim; Bakhtiar Khan; Ahmad H. Milyani; Khalid Mehmood Cheema; Zakiud Din;doi: 10.3390/en14175494
A new Single-sided Variable Flux Permanent Magnet Linear Machine with flux bridge in mover core is proposed in this paper. The flux bridge prevents the leakage flux from the mover and converts it into flux linkage, which greatly influences the performance of the machine. First, a lumped parameter model is used to find the suitable coil combination and no-load flux linkage of the proposed machine, which greatly reduces the computational time and drive storage. Secondly, the proposed machine replaces the expensive rare earth permanent magnets with ferrite magnets and provides improved flux controlling capability under variable excitation currents. Multivariable geometric optimization is utilized to optimize the leading design parameters like split ratio, stator pole width, width and height of permanent magnet, flux bridge width, the width of mover’s tooth, and stator slot depth at constant electric and magnetic loading. The optimized design increases the flux linkage by 44.11%, average thrust force by 35%, thrust force density by 35.02%, minimizes ripples in thrust force by 23%, and detent force by 87.5%. Furthermore, the results obtained by 2D analysis are verified by 3D analysis. Thermal analysis is done to set the operating limit of the proposed machine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Muhammad Qasim; Faisal Khan; Basharat Ullah; Himayat Ullah Jan; Hend I. Alkhammash;doi: 10.3390/en15041346
Linear hybrid excited flux switching machines (LHEFSM) combine the features of permanent magnet flux switching machines (PMFSM) and field excited flux switching machines (FEFSM). Because of the widespread usage of rare-earth PM materials, their costs are steadily rising. This study proposes an LHEFSM, a dual stator LHEFSM (DSLHEFSM), and a dual mover LHEFSM (DMLHEFSM) to solve this issue. The employment of ferrite magnets rather than rare-earth PM in these suggested designs is significant. Compared to traditional designs, the proposed designs feature greater thrust force, power density, reduced normal force, and a 25% decrease in PM volume. A yokeless primary structure was used in a DSLHEFSM to minimize the volume of the mover, increasing the thrust force density. In DMLHELFSM, on the other hand, a yokeless secondary structure was used to lower the secondary volume and the machine’s total cost. Single variable optimization was used to optimize all of the proposed designs. By completing a 3D study, the electromagnetic performances acquired from the 2D analysis were confirmed. Compared to conventional designs, the average thrust force in LHEFSM, DSLHEFSM, and DMLHEFSM was enhanced by 15%, 16.8%, and 15.6%, respectively. Overall, the presented machines had a high thrust force density, a high-power density, a high no-load electromotive force, and a low normal force, allowing them to be used in long-stroke applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Himayat Jan; Faisal Khan; Basharat Ullah; Muhammad Qasim; Malak Khan; Ghulam Hafeez; Fahad Albogamy;doi: 10.3390/en14248511
This paper presents a Hybrid Excited Double-Sided Linear Flux Switching Machine (HEDSLFSM) with a crooked tooth modular stator. Generally, the conventional stators are made of a full-length iron core, increasing manufacturing costs and iron losses. Higher iron losses result in lower efficiency and lower overall performance. A U-shaped modular stator with a crooked tooth is used to lower iron consumption and increase the machine’s efficiency. Ferrite magnets are used to replace rare earth magnets, which also reduces the machine cost. Two DC excitation windings are used above and below the ferrite magnet to reduce the PM volume. 2D electromagnetic performance analysis is done to observe the key performance indices. Geometric optimization is used to optimize the Split Ratio (S.R), DC winding slot area (DCw), and AC winding slot area (ACw). Stator Tooth Width (STW), space between the modules (S.S.), and crooked angle (α) are optimized through JMAG in-built Genetic Algorithm (G.A.) optimization. High thrust force density and modular stator make it a good candidate for long-stroke applications like railway transits. The thermal analysis of the machine is performed by FEA analysis and then validated by 2D LPMC (Lumped Parametric Magnetic Equivalent Circuit) model. Both analyses are compared, and an error percentage of less than 4% is achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Siddique Akbar; Faisal Khan; Wasiq Ullah; Basharat Ullah; Ahmad H. Milyani; Abdullah Ahmed Azhari;doi: 10.3390/en15207531
Slotting effect in electric machines reduces flux per pole that effect magnetic flux density distribution in the air gap which induces harmonics in magnetic flux density causing flux pulsation, that in turn generates dominant torque pulsation in the form of cogging torque and torque ripples. To overcome the abovesaid demerits, a novel outer rotor field-excited flux-switching machine (OR-FSFSM) with a combined semi-closed and open slots stator is proposed in this study. The developed OR-FEFSM offers a high-power factor, due to the utilization of the semi-closed slot for armature coils. The open slot stator structure was chosen for the field excitation coil, which effectively suppresses leakage reluctance that causes flux pulsation. Thus, the influence of torque ripples is reduced, and the average torque is improved. In order to investigate the effectiveness of the proposed OR-FEFSM, a detailed study of stator slot and rotor pole combinations are performed. Based on simplified mathematical formulation, 12S/7P (stator slot/rotor poles), 12S/11P, 12S/13P, and 12S/17P are the most feasible combinations. Finite Element Analysis (FEA) based on comprehensive electromagnetic performance is performed on each combination, and found that 12S/13P offers the highest average torque of 4.62 Nm, whereas 3.72 Nm, 2.72Nm, and 1.68 Nm average torque is offered by 12S/17P, 12S/7P, and 12S/11P, respectively. Based on the initial analysis, 12S/13P was considered for further analysis and optimized using JMAG built-in Genetic Algorithm (GA). Moreover, thermal analysis was performed, and the proposed design was compared with the conventional design.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207531&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Ziaul Islam; Faisal Khan; Basharat Ullah; Ahmad H. Milyani; Abdullah Ahmed Azhari;doi: 10.3390/en15207533
Axial flux permanent magnet (AFPM) machines are good candidates for electric vehicle applications due to their high torque density, improved efficiency, and better flux distribution; thus, they are often used. A dual-rotor single-stator AFPM machine with four differently shaped permanent magnet (PM) rotors is investigated. The main aim of this paper is to enhance the average torque while minimizing the cogging torque and torque ripples at the expense of low PM volume. The proposed machines are analyzed in terms of flux linkage, back-EMF, cogging torque, average torque, and torque ripples. The analysis reveals that the machine with an arc-shaped PM rotor performs better than the others. In addition, the trapozoidal arc-shaped PM used in the AFPM machine outperforms the hexagonal, skew arc, and traditional trapezoidal PMs. The torque density of the trapezoidal-shaped PM machine is 40.23 (KNm/m3), while that of the hexagonal shape is 32.46 (KNm/m3), that of the skew arc shape is 39.78 (KNm/m3), and that of the arc shape is 50.38 (KNm/m3).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Himayat Ullah Jan; Faisal Khan; Basharat Ullah; Muhammad Qasim; Ahmad H. Milyani; Abdullah Ahmed Azhari;doi: 10.3390/en15145275
This paper presents a novel linear hybrid excited flux switching permanent magnet machine (LHEFSPMM) with a crooked tooth modular stator. Conventional stators are made up of a pure iron core, which results in high manufacturing costs and increased iron core losses. Using a modular stator lowers the iron volume by up to 18% compared to a conventional stator, which minimizes the core losses and reduces the machine’s overall cost. A crooked angle is introduced to improve the flux linkage between the stator pole and the mover slot. Ferrite magnets are used with parallel magnetization to reduce the cost of the machine. Two-dimensional FEA is performed to analyze and evaluate various performance parameters of the proposed machine. Geometric optimization is used to optimize the split ratio (S.R) and winding slot area (Slotarea). Genetic algorithm (GA) is applied and is used to optimize stator tooth width (STW), space between the modules (SS), crooked angle (α), and starting angle (θ). The proposed model has a high thrust density (306.61 kN/m3), lower detent force (8.4 N), and a simpler design with higher efficiency (86%). The linear modular structure makes it a good candidate for railway transportation and electric trains. Thermal analysis of the machine is performed by FEA and then the results are validated by an LPMEC model. Overall, a very good agreement is observed between both the analyses, and relative percentage error of less than 3% is achieved, which is considerable since the FEA is in 3D while 2D temperature flow is considered in the LPMEC model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Basharat Ullah; Faisal Khan; Muhammad Qasim; Bakhtiar Khan; Ahmad H. Milyani; Khalid Mehmood Cheema; Zakiud Din;doi: 10.3390/en14175494
A new Single-sided Variable Flux Permanent Magnet Linear Machine with flux bridge in mover core is proposed in this paper. The flux bridge prevents the leakage flux from the mover and converts it into flux linkage, which greatly influences the performance of the machine. First, a lumped parameter model is used to find the suitable coil combination and no-load flux linkage of the proposed machine, which greatly reduces the computational time and drive storage. Secondly, the proposed machine replaces the expensive rare earth permanent magnets with ferrite magnets and provides improved flux controlling capability under variable excitation currents. Multivariable geometric optimization is utilized to optimize the leading design parameters like split ratio, stator pole width, width and height of permanent magnet, flux bridge width, the width of mover’s tooth, and stator slot depth at constant electric and magnetic loading. The optimized design increases the flux linkage by 44.11%, average thrust force by 35%, thrust force density by 35.02%, minimizes ripples in thrust force by 23%, and detent force by 87.5%. Furthermore, the results obtained by 2D analysis are verified by 3D analysis. Thermal analysis is done to set the operating limit of the proposed machine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Muhammad Qasim; Faisal Khan; Basharat Ullah; Himayat Ullah Jan; Hend I. Alkhammash;doi: 10.3390/en15041346
Linear hybrid excited flux switching machines (LHEFSM) combine the features of permanent magnet flux switching machines (PMFSM) and field excited flux switching machines (FEFSM). Because of the widespread usage of rare-earth PM materials, their costs are steadily rising. This study proposes an LHEFSM, a dual stator LHEFSM (DSLHEFSM), and a dual mover LHEFSM (DMLHEFSM) to solve this issue. The employment of ferrite magnets rather than rare-earth PM in these suggested designs is significant. Compared to traditional designs, the proposed designs feature greater thrust force, power density, reduced normal force, and a 25% decrease in PM volume. A yokeless primary structure was used in a DSLHEFSM to minimize the volume of the mover, increasing the thrust force density. In DMLHELFSM, on the other hand, a yokeless secondary structure was used to lower the secondary volume and the machine’s total cost. Single variable optimization was used to optimize all of the proposed designs. By completing a 3D study, the electromagnetic performances acquired from the 2D analysis were confirmed. Compared to conventional designs, the average thrust force in LHEFSM, DSLHEFSM, and DMLHEFSM was enhanced by 15%, 16.8%, and 15.6%, respectively. Overall, the presented machines had a high thrust force density, a high-power density, a high no-load electromotive force, and a low normal force, allowing them to be used in long-stroke applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041346&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Himayat Jan; Faisal Khan; Basharat Ullah; Muhammad Qasim; Malak Khan; Ghulam Hafeez; Fahad Albogamy;doi: 10.3390/en14248511
This paper presents a Hybrid Excited Double-Sided Linear Flux Switching Machine (HEDSLFSM) with a crooked tooth modular stator. Generally, the conventional stators are made of a full-length iron core, increasing manufacturing costs and iron losses. Higher iron losses result in lower efficiency and lower overall performance. A U-shaped modular stator with a crooked tooth is used to lower iron consumption and increase the machine’s efficiency. Ferrite magnets are used to replace rare earth magnets, which also reduces the machine cost. Two DC excitation windings are used above and below the ferrite magnet to reduce the PM volume. 2D electromagnetic performance analysis is done to observe the key performance indices. Geometric optimization is used to optimize the Split Ratio (S.R), DC winding slot area (DCw), and AC winding slot area (ACw). Stator Tooth Width (STW), space between the modules (S.S.), and crooked angle (α) are optimized through JMAG in-built Genetic Algorithm (G.A.) optimization. High thrust force density and modular stator make it a good candidate for long-stroke applications like railway transits. The thermal analysis of the machine is performed by FEA analysis and then validated by 2D LPMC (Lumped Parametric Magnetic Equivalent Circuit) model. Both analyses are compared, and an error percentage of less than 4% is achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu