Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • SA

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mohammed Ikbal Kabir; S.A. Shahahmadi; Victor Lim; Saleem H. Zaidi; +2 Authors

    L'efficacité de conversion d'une cellule solaire peut être sensiblement augmentée par des propriétés de matériau améliorées et des conceptions associées. Dans un premier temps, cette étude a adopté la technique de simulation AMPS-1D (analyse des structures microélectroniques et photoniques) pour concevoir et optimiser les paramètres de la cellule avant la fabrication, où les paramètres de conception optimaux peuvent être validés. Les cellules solaires à jonction unique à base de silicium amorphe hydrogéné (a-Si :H) ont été analysées à l'aide du simulateur AMPS-1D. L'enquête a été effectuée sur la base de paramètres de modèle importants tels que l'épaisseur, les concentrations de dopage, la bande interdite et la température de fonctionnement, etc. L'efficacité de la jonction unique a-Si :H peut être atteinte jusqu'à plus de 19 % après optimisation paramétrique dans la simulation, ce qui peut sembler irréaliste avec les technologies actuellement disponibles. Par conséquent, les cellules solaires a-SiC :H/a-SiC : H-buffer/a-Si : H/a-Si :H conçues et optimisées numériquement ont été fabriquées en utilisant le PECVD (dépôt chimique en phase vapeur assisté par plasma), où la meilleure efficacité de conversion initiale de 10,02 % a été atteinte ( V, mA/cm2 et ) pour une cellule de petite surface (0,086 cm2). La caractéristique d'efficacité quantique (QE) montre la meilleure réponse spectrale de la cellule dans la gamme de longueurs d'onde de 400 nm à 650 nm, ce qui prouve qu'elle est un candidat potentiel en tant que cellule moyenne dans les structures multijonctions à base de a-Si. La eficiencia de conversión de una célula solar se puede aumentar sustancialmente mediante la mejora de las propiedades del material y los diseños asociados. Al principio, este estudio ha adoptado la técnica de simulación AMPS-1D (análisis de estructuras microelectrónicas y fotónicas) para diseñar y optimizar los parámetros de la celda antes de la fabricación, donde se pueden validar los parámetros de diseño óptimos. Se han analizado células solares de unión única basadas en silicio amorfo hidrogenado (a-Si:H) utilizando el simulador AMPS-1D. La investigación se ha realizado en función de parámetros importantes del modelo, como el espesor, las concentraciones de dopaje, la banda prohibida y la temperatura de funcionamiento, etc. La eficiencia de la unión simple a-Si:H se puede lograr hasta más del 19% después de la optimización paramétrica en la simulación, lo que puede parecer poco realista con las tecnologías disponibles actualmente. Por lo tanto, las células solares a-SiC:H/a-SiC: H-buffer/a-Si:H/a-Si:H diseñadas y optimizadas numéricamente se han fabricado utilizando PECVD (deposición química de vapor mejorada con plasma), donde se ha logrado la mejor eficiencia de conversión inicial de 10.02% ( V, mA/cm2 y ) para una célula de área pequeña (0.086 cm2). La característica de eficiencia cuántica (QE) muestra la mejor respuesta espectral de la célula en el rango de longitud de onda de 400 nm–650 nm, lo que demuestra que es un candidato potencial como célula media en estructuras multiunión basadas en a-Si. The conversion efficiency of a solar cell can substantially be increased by improved material properties and associated designs. At first, this study has adopted AMPS-1D (analysis of microelectronic and photonic structures) simulation technique to design and optimize the cell parameters prior to fabrication, where the optimum design parameters can be validated. Solar cells of single junction based on hydrogenated amorphous silicon (a-Si:H) have been analyzed by using AMPS-1D simulator. The investigation has been made based on important model parameters such as thickness, doping concentrations, bandgap, and operating temperature and so forth. The efficiency of single junction a-Si:H can be achieved as high as over 19% after parametric optimization in the simulation, which might seem unrealistic with presently available technologies. Therefore, the numerically designed and optimized a-SiC:H/a-SiC:H-buffer/a-Si:H/a-Si:H solar cells have been fabricated by using PECVD (plasma-enhanced chemical vapor deposition), where the best initial conversion efficiency of 10.02% has been achieved ( V, mA/cm2 and ) for a small area cell (0.086 cm2). The quantum efficiency (QE) characteristic shows the cell’s better spectral response in the wavelength range of 400 nm–650 nm, which proves it to be a potential candidate as the middle cell in a-Si-based multijunction structures. يمكن زيادة كفاءة تحويل الخلية الشمسية بشكل كبير من خلال تحسين خصائص المواد والتصاميم المرتبطة بها. في البداية، اعتمدت هذه الدراسة تقنية محاكاة AMPS -1D (تحليل الهياكل الإلكترونية الدقيقة والفوتونية) لتصميم وتحسين معلمات الخلية قبل التصنيع، حيث يمكن التحقق من معلمات التصميم المثلى. تم تحليل الخلايا الشمسية ذات الوصلة الواحدة القائمة على السيليكون غير المتبلور المهدرج (a - Si:H) باستخدام محاكي AMPS -1D. تم إجراء التحقيق بناءً على معلمات النموذج المهمة مثل السُمك وتركيزات المنشطات والفجوة النطاقية ودرجة حرارة التشغيل وما إلى ذلك. يمكن تحقيق كفاءة الوصلة المفردة a - Si:H بنسبة تزيد عن 19 ٪ بعد التحسين البارامتري في المحاكاة، والذي قد يبدو غير واقعي مع التقنيات المتاحة حاليًا. لذلك، تم تصنيع الخلايا الشمسية a - SiC:H/a - SiC:H - buffer/a - Si:H/a - Si: H المصممة والمحسنة عدديًا باستخدام PECVD (ترسيب البخار الكيميائي المحسن بالبلازما)، حيث تم تحقيق أفضل كفاءة تحويل أولية بنسبة 10.02 ٪ ( V، mA/cm2 و ) لخلية صغيرة المساحة (0.086 سم2). تُظهر خاصية الكفاءة الكمية (QE) استجابة طيفية أفضل للخلية في نطاق الطول الموجي 400 نانومتر - 650 نانومتر، مما يثبت أنها مرشحة محتملة كخلية وسطى في الهياكل متعددة الوصلات القائمة على a - Si.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Photoenergy
    Article . 2012 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Photoenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/f8...
    Other literature type . 2012
    Data sources: Datacite
    https://dx.doi.org/10.60692/s3...
    Other literature type . 2012
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Photoenergy
      Article . 2012 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Photoenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/f8...
      Other literature type . 2012
      Data sources: Datacite
      https://dx.doi.org/10.60692/s3...
      Other literature type . 2012
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nilofar Asim; Nowshad Amin; Nowshad Amin; Kamaruzzaman Sopian; +6 Authors

    Abstract Thermoelectric technology is a promising solution to recover waste heat from different resources. There are numerous researches in the literature that measure performance of thermoelectric modules (TEMs). A comprehensive review of research studies that classifies and expounds disparities between various thermoelectric power generation (TEPG) systems is still unavailable and therefore, this paper reviews major concerns on their designs and performances. Firstly, various main elements of TEPG systems, which affect the output power of TEMs such as stabilizer or heat exchanger, interface, contact pressure, insulation, cooling system, and integrity are studied. Secondly, performances of test rigs and various prototypes are reviewed in detail based on their cooling methods since cooling is the most prominent factor among other counterparts. In general, the cooling unit is divided into either passive or active cooling system, which is selected based on its well-defined use. A comprehensive study on various test rigs with active cooling systems is given while a broader range in prototypes is covered and classified under detailed surveys. This review is expected to be of value for researchers in the field of thermoelectric. Overall, in order to have a prospective future towards commercialization of TEPG systems, the existing prototypes in the literature are still subjected to many enhancements in their design aspects, while further improvements are needed to be achieved independently in TEMs’ development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mohammed Ikbal Kabir; S.A. Shahahmadi; Victor Lim; Saleem H. Zaidi; +2 Authors

    L'efficacité de conversion d'une cellule solaire peut être sensiblement augmentée par des propriétés de matériau améliorées et des conceptions associées. Dans un premier temps, cette étude a adopté la technique de simulation AMPS-1D (analyse des structures microélectroniques et photoniques) pour concevoir et optimiser les paramètres de la cellule avant la fabrication, où les paramètres de conception optimaux peuvent être validés. Les cellules solaires à jonction unique à base de silicium amorphe hydrogéné (a-Si :H) ont été analysées à l'aide du simulateur AMPS-1D. L'enquête a été effectuée sur la base de paramètres de modèle importants tels que l'épaisseur, les concentrations de dopage, la bande interdite et la température de fonctionnement, etc. L'efficacité de la jonction unique a-Si :H peut être atteinte jusqu'à plus de 19 % après optimisation paramétrique dans la simulation, ce qui peut sembler irréaliste avec les technologies actuellement disponibles. Par conséquent, les cellules solaires a-SiC :H/a-SiC : H-buffer/a-Si : H/a-Si :H conçues et optimisées numériquement ont été fabriquées en utilisant le PECVD (dépôt chimique en phase vapeur assisté par plasma), où la meilleure efficacité de conversion initiale de 10,02 % a été atteinte ( V, mA/cm2 et ) pour une cellule de petite surface (0,086 cm2). La caractéristique d'efficacité quantique (QE) montre la meilleure réponse spectrale de la cellule dans la gamme de longueurs d'onde de 400 nm à 650 nm, ce qui prouve qu'elle est un candidat potentiel en tant que cellule moyenne dans les structures multijonctions à base de a-Si. La eficiencia de conversión de una célula solar se puede aumentar sustancialmente mediante la mejora de las propiedades del material y los diseños asociados. Al principio, este estudio ha adoptado la técnica de simulación AMPS-1D (análisis de estructuras microelectrónicas y fotónicas) para diseñar y optimizar los parámetros de la celda antes de la fabricación, donde se pueden validar los parámetros de diseño óptimos. Se han analizado células solares de unión única basadas en silicio amorfo hidrogenado (a-Si:H) utilizando el simulador AMPS-1D. La investigación se ha realizado en función de parámetros importantes del modelo, como el espesor, las concentraciones de dopaje, la banda prohibida y la temperatura de funcionamiento, etc. La eficiencia de la unión simple a-Si:H se puede lograr hasta más del 19% después de la optimización paramétrica en la simulación, lo que puede parecer poco realista con las tecnologías disponibles actualmente. Por lo tanto, las células solares a-SiC:H/a-SiC: H-buffer/a-Si:H/a-Si:H diseñadas y optimizadas numéricamente se han fabricado utilizando PECVD (deposición química de vapor mejorada con plasma), donde se ha logrado la mejor eficiencia de conversión inicial de 10.02% ( V, mA/cm2 y ) para una célula de área pequeña (0.086 cm2). La característica de eficiencia cuántica (QE) muestra la mejor respuesta espectral de la célula en el rango de longitud de onda de 400 nm–650 nm, lo que demuestra que es un candidato potencial como célula media en estructuras multiunión basadas en a-Si. The conversion efficiency of a solar cell can substantially be increased by improved material properties and associated designs. At first, this study has adopted AMPS-1D (analysis of microelectronic and photonic structures) simulation technique to design and optimize the cell parameters prior to fabrication, where the optimum design parameters can be validated. Solar cells of single junction based on hydrogenated amorphous silicon (a-Si:H) have been analyzed by using AMPS-1D simulator. The investigation has been made based on important model parameters such as thickness, doping concentrations, bandgap, and operating temperature and so forth. The efficiency of single junction a-Si:H can be achieved as high as over 19% after parametric optimization in the simulation, which might seem unrealistic with presently available technologies. Therefore, the numerically designed and optimized a-SiC:H/a-SiC:H-buffer/a-Si:H/a-Si:H solar cells have been fabricated by using PECVD (plasma-enhanced chemical vapor deposition), where the best initial conversion efficiency of 10.02% has been achieved ( V, mA/cm2 and ) for a small area cell (0.086 cm2). The quantum efficiency (QE) characteristic shows the cell’s better spectral response in the wavelength range of 400 nm–650 nm, which proves it to be a potential candidate as the middle cell in a-Si-based multijunction structures. يمكن زيادة كفاءة تحويل الخلية الشمسية بشكل كبير من خلال تحسين خصائص المواد والتصاميم المرتبطة بها. في البداية، اعتمدت هذه الدراسة تقنية محاكاة AMPS -1D (تحليل الهياكل الإلكترونية الدقيقة والفوتونية) لتصميم وتحسين معلمات الخلية قبل التصنيع، حيث يمكن التحقق من معلمات التصميم المثلى. تم تحليل الخلايا الشمسية ذات الوصلة الواحدة القائمة على السيليكون غير المتبلور المهدرج (a - Si:H) باستخدام محاكي AMPS -1D. تم إجراء التحقيق بناءً على معلمات النموذج المهمة مثل السُمك وتركيزات المنشطات والفجوة النطاقية ودرجة حرارة التشغيل وما إلى ذلك. يمكن تحقيق كفاءة الوصلة المفردة a - Si:H بنسبة تزيد عن 19 ٪ بعد التحسين البارامتري في المحاكاة، والذي قد يبدو غير واقعي مع التقنيات المتاحة حاليًا. لذلك، تم تصنيع الخلايا الشمسية a - SiC:H/a - SiC:H - buffer/a - Si:H/a - Si: H المصممة والمحسنة عدديًا باستخدام PECVD (ترسيب البخار الكيميائي المحسن بالبلازما)، حيث تم تحقيق أفضل كفاءة تحويل أولية بنسبة 10.02 ٪ ( V، mA/cm2 و ) لخلية صغيرة المساحة (0.086 سم2). تُظهر خاصية الكفاءة الكمية (QE) استجابة طيفية أفضل للخلية في نطاق الطول الموجي 400 نانومتر - 650 نانومتر، مما يثبت أنها مرشحة محتملة كخلية وسطى في الهياكل متعددة الوصلات القائمة على a - Si.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Photoenergy
    Article . 2012 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Photoenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.60692/f8...
    Other literature type . 2012
    Data sources: Datacite
    https://dx.doi.org/10.60692/s3...
    Other literature type . 2012
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    58
    citations58
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Photoenergy
      Article . 2012 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Photoenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.60692/f8...
      Other literature type . 2012
      Data sources: Datacite
      https://dx.doi.org/10.60692/s3...
      Other literature type . 2012
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nilofar Asim; Nowshad Amin; Nowshad Amin; Kamaruzzaman Sopian; +6 Authors

    Abstract Thermoelectric technology is a promising solution to recover waste heat from different resources. There are numerous researches in the literature that measure performance of thermoelectric modules (TEMs). A comprehensive review of research studies that classifies and expounds disparities between various thermoelectric power generation (TEPG) systems is still unavailable and therefore, this paper reviews major concerns on their designs and performances. Firstly, various main elements of TEPG systems, which affect the output power of TEMs such as stabilizer or heat exchanger, interface, contact pressure, insulation, cooling system, and integrity are studied. Secondly, performances of test rigs and various prototypes are reviewed in detail based on their cooling methods since cooling is the most prominent factor among other counterparts. In general, the cooling unit is divided into either passive or active cooling system, which is selected based on its well-defined use. A comprehensive study on various test rigs with active cooling systems is given while a broader range in prototypes is covered and classified under detailed surveys. This review is expected to be of value for researchers in the field of thermoelectric. Overall, in order to have a prospective future towards commercialization of TEPG systems, the existing prototypes in the literature are still subjected to many enhancements in their design aspects, while further improvements are needed to be achieved independently in TEMs’ development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph