- home
- Advanced Search
- Energy Research
- Open Access
- AT
- TH
- TU Wien
- Energy Research
- Open Access
- AT
- TH
- TU Wien
Research data keyboard_double_arrow_right Dataset 2023Publisher:Mendeley Data Authors: Stolar, Alexander;In an era of climate change, supply chain issues and the necessary transitions, green chemistry, green engineering and inherent safety offer possibilities for a more safe and resilient industry. A literature study with application to a pilot Organosolv lignocellulosic feedstock bioreactor should show possibilities and ways to strengthen sustainable and safer production. It highlights challenges in practical implementation like solvent selection, solvent recovery, intrinsically safe equipment and process intensification like membrane processes for saving energy. Process safety techniques should guide the way to and should help to find possible restrictions and opportunities for more resilient processes and a more resilient future. Keywords: process safety; green chemistry; organosolv; biorefinery; sustainability; solvent selection;
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/5p255hcpk7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/5p255hcpk7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Herbert Formayer; Philipp Maier; Imran Nadeem; David Leidinger; Fabian Lehner; Franziska Schöniger; Gustav Resch; Demet Suna; Peter Widhalm; Nicolas Pardo-Garcia; Florian Hasengst; Gerhard Totschnig;For the modelling of electricity production and demand, meteorological conditions are becoming more relevant due to the increasing contribution from renewable electricity production. But the requirements on meteorological data sets for electricity modelling are quite high. One challenge is the high temporal resolution, since a typical time step for modelling electricity production and demand is one hour. On the other side the European electricity market is highly connected, so that a pure country based modelling does not make sense and at least the whole European Union area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed an aggregated European wide data set that has a temporal resolution of one hour, covers the whole EU area, has a reasonable size but is considering the high spatial variability. This meteorological data set for Europe for the historical period and climate change projections fulfills all relevant criteria for energy modelling. It has a hourly temporal resolution, considers local effects up to a spatial resolution of 1 km and has a suitable size, as all variables are aggregated to NUTS regions. Additionally meteorological information from wind speed and river run-off is directly converted into power productions, using state of the art methods and the current information on the location of power plants. Within the research project SECURES (https://www.secures.at/) this data set has been widely used for energy modelling. The SECURES-Met dataset provides variables visible in the table. Variable Short name Unit Aggregation methods Temporal resolution Temperature (2m) T2M °C °C spatial mean population weighted mean (recommended) hourly Radiation GLO (mean global radiation) BNI (direct normal irradiation) Wm-2 Wm-2 spatial mean population weighted mean (recommended) hourly Potential Wind Power WP 1 normalized with potentially available area hourly Hydro Power Potential HYD-RES (reservoir) HYD-ROR (run-of-river) MW 1 summed power production summed power production normalized with average daily production daily SECURES-Met is available in a tabular csv format for the historical period (1981-2020, Hydro only until 2010) created from ERA5 and ERA5-Land and two future emission scenarios (RCP 4.5 and RCP 8.5, both 1951-2100, wind power starting from 1981, hydro power from 1971) created from one CMIP5 EUROCORDEX model (GCM: ICHEC-EC-EARTH, RCM: KNMI-RACMO22E, ensemble run: r12i1p1) on the spatial aggregation level NUTS0 (country-wide), NUTS2 (province-wide), NUTS3 (Austria only), and EEZ (Exclusive Economic Zones, offshore only). The data is divided into the historical (Historical.zip) and the two emission scenarios (Future_RCP45.zip and Future_RCP85.zip), a README file, which describes, how the files are organized, and a folder (Meta.zip), which has information and shape files of the different NUTS levels. As population weighted temperature and radiation represent values in geographical areas more relevant for solar power, it is highly relevant to use population weighted files. Spatial mean should be used for reference only. The project SECURES, in which this dataset was produced, was funded by the Climate and Energy Fund (Klima- und Energiefonds) under project number KR19AC0K17532.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:TU Wien Authors: Preimesberger, Wolfgang; Stradiotti, Pietro; Duchemin, Diane; Rodriguez-Fernandez, Nemesio; +1 AuthorsPreimesberger, Wolfgang; Stradiotti, Pietro; Duchemin, Diane; Rodriguez-Fernandez, Nemesio; Dorigo, Wouter Arnoud;This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/ This dataset contains information on the Surface Soil Moisture (SM) content derived from satellite observations in the microwave domain. Abstract The MODELFREE product of the ESA CCI SM v9.1 science data suite provides - similar to the COMBINED product - global, harmonized daily satellite soil moisture measurements from both radar and radiometer observations. This product contains soil moisture estimates at 0.25-degree spatial resolution, and covers the period from 2002-2023. Soil moisture is derived from observations of 13 different active and passive satellites operating across various frequency bands (K, C, X, and L-band). Unlike the COMBINED product, for which soil moisture fields from the GLDAS Noah model dataset are used to harmonize individual satellite sensor measurements, the MODELFREE product utilizes a satellite-only scaling reference dataset. This reference incorporates gap-filled soil moisture derived from AMSR-E (2002-2010) and from intercalibrated SMAP/SMOS brightness temperature data (2010-2023). The merging algorithm employed is consistent with that of the v9.1 COMBINED product. The new scaling reference leads to significantly different absolute soil moisture values, especially in latitudes above 60 °N. Data from the SMMR, SSMI and ERS missions are not included in this product. This product is in its early development stage and should be used with caution, as it may contain incomplete or unvalidated data. Summary First version of a model-independent version of the ESA CCI SM COMBINED product 2002-2023, global, 0.25 deg. resolution GLDAS Noah (model) is replaced with a purely satellite-based scaling reference Different absolute value range compared to the COMBINED product is expected due to the different scaling reference used Known issues A temporal inconsistency is observed between the AMSR-E and SMOS period (at 01-2010). This can affect long-term trends in the data In the period from 01-2002 to 06-2002 no data are available above 37 °N and below 37 °S respectively (all measurements in this period are from the TRMM Microwave Imager) Technical Details The dataset provides global daily estimates for the 2002-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention: ESACCI-SOILMOISTURE-L3S-SSMV-COMBINED_MODELFREE-YYYYMMDD000000-fv09.1.nc Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables: sm: (float) The Soil Moisture variable reflects estimates of daily average volumetric soil moisture content (m3/m3) in the soil surface layer (~0-5 cm) over a whole grid cell (0.25 degree). sm_uncertainty: (float) The Soil Moisture Uncertainty variable reflects the uncertainty (random error) of satellite observations. Derived using triple collocation analysis. dn_flag: (int) Indicator for satellite orbit(s) used in the retrieval (day/nighttime). 1=day, 2=night, 3=both flag: (int) Indicator for data quality / missing data indicator. For more details, see netcdf attributes. freqbandID: (int) Indicator for frequency band(s) used in the retrieval. For more details, see netcdf attributes. mode: (int) Indicator for satellite orbit(s) used in the retrieval (ascending, descending) sensor: (int) Indicator for satellite sensor(s) used in the retrieval. For more details, see netcdf attributes. t0: (float) Representative time stamp, based on overpass times of all merged satellites. Additional information for each variable is given in the netCDF attributes. Software to open netCDF files These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as: Xarray (python) netCDF4 (python) esa_cci_sm (python) Similar tools exists for other programming languages (Matlab, R, etc.) Software packages and GIS tools can open netCDF files, e.g. CDO, NCO, QGIS, ArCGIS You can also use the GUI software Panoply to view the contents of each file References R. Madelon et al., “Toward the Removal of Model Dependency in Soil Moisture Climate Data Records by Using an L-Band Scaling Reference," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 831-848, 2022, doi: 10.1109/JSTARS.2021.3137008. Related Records The following records are all part of the Soil Moisture Climate Data Records from satellites community 1 ESA CCI SM RZSM Root-Zone Soil Moisture Record 10.48436/v8cwj-jk556 2 ESA CCI SM GAPFILLED Surface Soil Moisture Record 10.48436/hcm6n-t4m35
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48436/svr1r-27j77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48436/svr1r-27j77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: David Fellner; Thomas I. Strasser; Wolfgang Kastner;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 NetherlandsPublisher:MDPI AG Picuno, Caterina; Van Eygen, Emile; Brouwer, Marieke; Kuchta, Kerstin; Thoden van Velzen, Eggo Ulphard;doi: 10.3390/su13126772
handle: 11420/9751
Setting up strategies for a sound management of plastic packaging waste (PPW) is becoming increasingly crucial at many levels of the value chain in Europe. After the very first implementation of an extended producer responsibility scheme in Germany in 1991, many EU Countries followed. This resulted in a complex network of schemes that differ from one member state to another. This paper brings together the three latest studies describing the current flows of PPW across the waste value chain from Austria (reference year 2013), Germany and the Netherlands (reference year 2017). With this aim, the models of the three single studies have been adapted to fit into a common model, allowing to perform a comparative analysis. Although with a relatively comparable product market, the three countries have different management systems (e.g., separate collection systems, target sorting products and treatment of residual waste), reflecting different national strategies to achieve the circular economy targets. Recycling rates (in terms of washed milled goods at the output of the recycling process) for the three countries resulted in 23%, 43% and 30% of the total mass of PPW generated in, respectively, Austria, Germany and the Netherlands. The fraction of mixed recycled plastics, relevant for Germany and the Netherlands only, was determined to be one of the major determinants of the differences in recycling rates. Furthermore, the discussion revolves around new political targets that have the potential to contribute to addressing the issue of tradeoff between quantity and quality of recycled plastics placed on the market, with measures such as design-for-recycling and eco-modulation of EPR fees playing a critical role, while also pointing out the aspects that inevitably hinder closed-loop recycling.
Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Friederich Kupzog; Peter Palensky;Abstract This paper focuses on wide-area control systems for that Internet-based communication, although being the only economically feasible option for communication, is insufficient for reliability or transmission delay reasons. An example for such a control system is the modern electricity system, which is currently changing from the traditional hierarchical to a more and more peer-to-peer oriented structure, and thus having growing demands for modern IT and control solutions. While up to now consumers were considered passive players, a new generation of automated demand response emerges, where consumers can react on real-time prices, on grid parameters like frequency or on transport schedules, in terms of their energy consumption. For enabling these features, a robust wide-area control infrastructure has to be developed, that allows for low delay transmission of control commands and measurement data. Further, it is critical to find simple and consistent models of the involved processes to design the respective control infrastructure according to its needs. This paper describes a novel approach for the design of distributed wide-area control systems that utilises process-specific parameters (here: grid frequency changes) as a new means of fast and reliable communication besides conventional communication channels. Copyright © 2007 IFAC
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20071107-3-fr-3907.00048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20071107-3-fr-3907.00048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Ardeshir Mahdavi; Farhang Tahmasebi; Sepideh Mostofi;AbstractOccupancy patterns in building performance simulation are typically represented via fixed diversity profiles. More recently, stochastic models have been developed to generate random non-repeating occupancy profiles. In this context, an important question concerns the implications of occupancy modelling approaches for simulation results. The present contribution involves a virtual office building for which annual and peak heating and cooling demands are simulated. Thereby, both conventional and random profiles are deployed and different levels of occupants’ interaction with building systems are modelled. For the specific case considered here, the results do not show a noticeable difference between conventional and stochastic occupancy models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2014 Germany, SpainPublisher:EDP Sciences Funded by:EC | ANDESEC| ANDESM. Mirea; I. F. Gonçalves; Carlos Guerrero; A. J. M. Plompen; M. Mastromarco; C. Eleftheriadis; P. E. Koehler; V. Variale; J. Marganiec; F. Gunsing; T. Ware; I. Duran; W. Mondalaers; T. Martinez; F. Cerutti; F. Calviño; M. Brugger; A. Tsinganis; A. R. García; Rugard Dressler; Alberto Mengoni; C. Carrapiço; N. Colonna; Christoph Langer; P. Vaz; G. Giubrone; Cristian Massimi; Massimo Barbagallo; R. Sarmento; Petar Žugec; A. Hernández-Prieto; A. Hernández-Prieto; D. Karadimos; Jeri Kroll; R. Vlastou; A. Manousos; Javier Praena; E. González-Romero; J. Andrzejewski; J. Billowes; Rene Reifarth; E. Leal-Cidoncha; L. Audouin; C. Lederer; C. Rubbia; L.S. Leong; Stefan Schmidt; A. Ventura; A. K. Saxena; S. Altstadt; Dorothea Schumann; A. Pavlik; A. Riego; Fabio Belloni; Marco Calviani; M. Krtička; K. Fraval; F. Mingrone; M. Sabaté-Gilarte; Thomas Rauscher; C. Domingo-Pardo; D. Tarrío; J. L. Tain; P. F. Mastinu; M. J. Vermeulen; C. Weiß; P. M. Milazzo; J. Perkowski; L. Tassan-Got; C. Paradela; G. Cortes; M. A. Cortés-Giraldo; Srinivasan Ganesan; D. Bosnar; T. J. Wright; E. Mendoza; J. M. Quesada; F. Bečvář; E. Griesmayer; G. Tagliente; V. Bécares; E. Chiaveri; E. Chiaveri; D. Cano-Ott; E. Jericha; D. G. Jenkins; Arnaud Ferrari; G. Vannini; Niko Kivel; M. P. W. Chin; M. Diakaki; Mario Weigand; Anton Wallner; F. Käppeler; Y. Kadi; C. Lampoudis; H. Leeb; S. Valenta; E. Berthoumieux; E. Berthoumieux; Peter Schillebeeckx; Roberto Losito; Vasilis Vlachoudis;The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to new highflux experimental area, now under construction.
Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAConference object . 2004License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference objectData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjconf/20137901003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 96visibility views 96 download downloads 144 Powered bymore_vert Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAConference object . 2004License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference objectData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjconf/20137901003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Chengran Yin; Guangming Wang; Jiacheng Liao;Introduction: This paper proposes a deep learning algorithm based on the VMD-SSA-BiLSTM model for time series forecasting in the smart grid financial market. The algorithm aims to extract useful information from power grid signals to improve the timing prediction accuracy and meet the needs of sustainable innovation management.Methods: The proposed algorithm employs the variational mode decomposition (VMD) method to decompose and reduce the dimensionality of historical data, followed by singular spectrum analysis (SSA) to perform singular spectrum analysis on each intrinsic mode function component. The resulting singular value spectrum matrices serve as input to a bidirectional long short-term memory (BiLSTM) neural network, which learns the feature representation and prediction model of the smart grid financial market through forward propagation and backpropagation.Results: The experimental results demonstrate that the proposed algorithm effectively predicts the smart grid financial market's time series, achieving high prediction accuracy and stability. The approach can contribute to sustainable innovation management and the development of the smart grid.Discussion: The VMD-SSA-BiLSTM algorithm's efficiency in extracting useful information from power grid signals and avoiding overfitting can improve the accuracy of timing predictions in the smart grid financial market. The algorithm's broad application prospects can promote sustainable innovation management and contribute to the development of the smart grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1239542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1239542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:Mendeley Data Authors: Stolar, Alexander;In an era of climate change, supply chain issues and the necessary transitions, green chemistry, green engineering and inherent safety offer possibilities for a more safe and resilient industry. A literature study with application to a pilot Organosolv lignocellulosic feedstock bioreactor should show possibilities and ways to strengthen sustainable and safer production. It highlights challenges in practical implementation like solvent selection, solvent recovery, intrinsically safe equipment and process intensification like membrane processes for saving energy. Process safety techniques should guide the way to and should help to find possible restrictions and opportunities for more resilient processes and a more resilient future. Keywords: process safety; green chemistry; organosolv; biorefinery; sustainability; solvent selection;
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/5p255hcpk7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/5p255hcpk7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Herbert Formayer; Philipp Maier; Imran Nadeem; David Leidinger; Fabian Lehner; Franziska Schöniger; Gustav Resch; Demet Suna; Peter Widhalm; Nicolas Pardo-Garcia; Florian Hasengst; Gerhard Totschnig;For the modelling of electricity production and demand, meteorological conditions are becoming more relevant due to the increasing contribution from renewable electricity production. But the requirements on meteorological data sets for electricity modelling are quite high. One challenge is the high temporal resolution, since a typical time step for modelling electricity production and demand is one hour. On the other side the European electricity market is highly connected, so that a pure country based modelling does not make sense and at least the whole European Union area has to be considered. Additionally, the spatial resolution of the data set must be able to represent the thermal conditions, which requires high spatial resolution at least in mountainous regions. All these requirements lead to huge data amounts for historic observations and even more for climate change projections for the whole 21st century. Thus, we have developed an aggregated European wide data set that has a temporal resolution of one hour, covers the whole EU area, has a reasonable size but is considering the high spatial variability. This meteorological data set for Europe for the historical period and climate change projections fulfills all relevant criteria for energy modelling. It has a hourly temporal resolution, considers local effects up to a spatial resolution of 1 km and has a suitable size, as all variables are aggregated to NUTS regions. Additionally meteorological information from wind speed and river run-off is directly converted into power productions, using state of the art methods and the current information on the location of power plants. Within the research project SECURES (https://www.secures.at/) this data set has been widely used for energy modelling. The SECURES-Met dataset provides variables visible in the table. Variable Short name Unit Aggregation methods Temporal resolution Temperature (2m) T2M °C °C spatial mean population weighted mean (recommended) hourly Radiation GLO (mean global radiation) BNI (direct normal irradiation) Wm-2 Wm-2 spatial mean population weighted mean (recommended) hourly Potential Wind Power WP 1 normalized with potentially available area hourly Hydro Power Potential HYD-RES (reservoir) HYD-ROR (run-of-river) MW 1 summed power production summed power production normalized with average daily production daily SECURES-Met is available in a tabular csv format for the historical period (1981-2020, Hydro only until 2010) created from ERA5 and ERA5-Land and two future emission scenarios (RCP 4.5 and RCP 8.5, both 1951-2100, wind power starting from 1981, hydro power from 1971) created from one CMIP5 EUROCORDEX model (GCM: ICHEC-EC-EARTH, RCM: KNMI-RACMO22E, ensemble run: r12i1p1) on the spatial aggregation level NUTS0 (country-wide), NUTS2 (province-wide), NUTS3 (Austria only), and EEZ (Exclusive Economic Zones, offshore only). The data is divided into the historical (Historical.zip) and the two emission scenarios (Future_RCP45.zip and Future_RCP85.zip), a README file, which describes, how the files are organized, and a folder (Meta.zip), which has information and shape files of the different NUTS levels. As population weighted temperature and radiation represent values in geographical areas more relevant for solar power, it is highly relevant to use population weighted files. Spatial mean should be used for reference only. The project SECURES, in which this dataset was produced, was funded by the Climate and Energy Fund (Klima- und Energiefonds) under project number KR19AC0K17532.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7907883&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:TU Wien Authors: Preimesberger, Wolfgang; Stradiotti, Pietro; Duchemin, Diane; Rodriguez-Fernandez, Nemesio; +1 AuthorsPreimesberger, Wolfgang; Stradiotti, Pietro; Duchemin, Diane; Rodriguez-Fernandez, Nemesio; Dorigo, Wouter Arnoud;This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/ This dataset contains information on the Surface Soil Moisture (SM) content derived from satellite observations in the microwave domain. Abstract The MODELFREE product of the ESA CCI SM v9.1 science data suite provides - similar to the COMBINED product - global, harmonized daily satellite soil moisture measurements from both radar and radiometer observations. This product contains soil moisture estimates at 0.25-degree spatial resolution, and covers the period from 2002-2023. Soil moisture is derived from observations of 13 different active and passive satellites operating across various frequency bands (K, C, X, and L-band). Unlike the COMBINED product, for which soil moisture fields from the GLDAS Noah model dataset are used to harmonize individual satellite sensor measurements, the MODELFREE product utilizes a satellite-only scaling reference dataset. This reference incorporates gap-filled soil moisture derived from AMSR-E (2002-2010) and from intercalibrated SMAP/SMOS brightness temperature data (2010-2023). The merging algorithm employed is consistent with that of the v9.1 COMBINED product. The new scaling reference leads to significantly different absolute soil moisture values, especially in latitudes above 60 °N. Data from the SMMR, SSMI and ERS missions are not included in this product. This product is in its early development stage and should be used with caution, as it may contain incomplete or unvalidated data. Summary First version of a model-independent version of the ESA CCI SM COMBINED product 2002-2023, global, 0.25 deg. resolution GLDAS Noah (model) is replaced with a purely satellite-based scaling reference Different absolute value range compared to the COMBINED product is expected due to the different scaling reference used Known issues A temporal inconsistency is observed between the AMSR-E and SMOS period (at 01-2010). This can affect long-term trends in the data In the period from 01-2002 to 06-2002 no data are available above 37 °N and below 37 °S respectively (all measurements in this period are from the TRMM Microwave Imager) Technical Details The dataset provides global daily estimates for the 2002-2023 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD), month (MM) in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name has the following convention: ESACCI-SOILMOISTURE-L3S-SSMV-COMBINED_MODELFREE-YYYYMMDD000000-fv09.1.nc Each netCDF file contains 3 coordinate variables (WGS84 longitude, latitude and time stamp), as well as the following data variables: sm: (float) The Soil Moisture variable reflects estimates of daily average volumetric soil moisture content (m3/m3) in the soil surface layer (~0-5 cm) over a whole grid cell (0.25 degree). sm_uncertainty: (float) The Soil Moisture Uncertainty variable reflects the uncertainty (random error) of satellite observations. Derived using triple collocation analysis. dn_flag: (int) Indicator for satellite orbit(s) used in the retrieval (day/nighttime). 1=day, 2=night, 3=both flag: (int) Indicator for data quality / missing data indicator. For more details, see netcdf attributes. freqbandID: (int) Indicator for frequency band(s) used in the retrieval. For more details, see netcdf attributes. mode: (int) Indicator for satellite orbit(s) used in the retrieval (ascending, descending) sensor: (int) Indicator for satellite sensor(s) used in the retrieval. For more details, see netcdf attributes. t0: (float) Representative time stamp, based on overpass times of all merged satellites. Additional information for each variable is given in the netCDF attributes. Software to open netCDF files These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as: Xarray (python) netCDF4 (python) esa_cci_sm (python) Similar tools exists for other programming languages (Matlab, R, etc.) Software packages and GIS tools can open netCDF files, e.g. CDO, NCO, QGIS, ArCGIS You can also use the GUI software Panoply to view the contents of each file References R. Madelon et al., “Toward the Removal of Model Dependency in Soil Moisture Climate Data Records by Using an L-Band Scaling Reference," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 831-848, 2022, doi: 10.1109/JSTARS.2021.3137008. Related Records The following records are all part of the Soil Moisture Climate Data Records from satellites community 1 ESA CCI SM RZSM Root-Zone Soil Moisture Record 10.48436/v8cwj-jk556 2 ESA CCI SM GAPFILLED Surface Soil Moisture Record 10.48436/hcm6n-t4m35
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48436/svr1r-27j77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48436/svr1r-27j77&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: David Fellner; Thomas I. Strasser; Wolfgang Kastner;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100851&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 NetherlandsPublisher:MDPI AG Picuno, Caterina; Van Eygen, Emile; Brouwer, Marieke; Kuchta, Kerstin; Thoden van Velzen, Eggo Ulphard;doi: 10.3390/su13126772
handle: 11420/9751
Setting up strategies for a sound management of plastic packaging waste (PPW) is becoming increasingly crucial at many levels of the value chain in Europe. After the very first implementation of an extended producer responsibility scheme in Germany in 1991, many EU Countries followed. This resulted in a complex network of schemes that differ from one member state to another. This paper brings together the three latest studies describing the current flows of PPW across the waste value chain from Austria (reference year 2013), Germany and the Netherlands (reference year 2017). With this aim, the models of the three single studies have been adapted to fit into a common model, allowing to perform a comparative analysis. Although with a relatively comparable product market, the three countries have different management systems (e.g., separate collection systems, target sorting products and treatment of residual waste), reflecting different national strategies to achieve the circular economy targets. Recycling rates (in terms of washed milled goods at the output of the recycling process) for the three countries resulted in 23%, 43% and 30% of the total mass of PPW generated in, respectively, Austria, Germany and the Netherlands. The fraction of mixed recycled plastics, relevant for Germany and the Netherlands only, was determined to be one of the major determinants of the differences in recycling rates. Furthermore, the discussion revolves around new political targets that have the potential to contribute to addressing the issue of tradeoff between quantity and quality of recycled plastics placed on the market, with measures such as design-for-recycling and eco-modulation of EPR fees playing a critical role, while also pointing out the aspects that inevitably hinder closed-loop recycling.
Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Wageningen Staff PublicationsArticle . 2021License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: Friederich Kupzog; Peter Palensky;Abstract This paper focuses on wide-area control systems for that Internet-based communication, although being the only economically feasible option for communication, is insufficient for reliability or transmission delay reasons. An example for such a control system is the modern electricity system, which is currently changing from the traditional hierarchical to a more and more peer-to-peer oriented structure, and thus having growing demands for modern IT and control solutions. While up to now consumers were considered passive players, a new generation of automated demand response emerges, where consumers can react on real-time prices, on grid parameters like frequency or on transport schedules, in terms of their energy consumption. For enabling these features, a robust wide-area control infrastructure has to be developed, that allows for low delay transmission of control commands and measurement data. Further, it is critical to find simple and consistent models of the involved processes to design the respective control infrastructure according to its needs. This paper describes a novel approach for the design of distributed wide-area control systems that utilises process-specific parameters (here: grid frequency changes) as a new means of fast and reliable communication besides conventional communication channels. Copyright © 2007 IFAC
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20071107-3-fr-3907.00048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3182/20071107-3-fr-3907.00048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Ardeshir Mahdavi; Farhang Tahmasebi; Sepideh Mostofi;AbstractOccupancy patterns in building performance simulation are typically represented via fixed diversity profiles. More recently, stochastic models have been developed to generate random non-repeating occupancy profiles. In this context, an important question concerns the implications of occupancy modelling approaches for simulation results. The present contribution involves a virtual office building for which annual and peak heating and cooling demands are simulated. Thereby, both conventional and random profiles are deployed and different levels of occupants’ interaction with building systems are modelled. For the specific case considered here, the results do not show a noticeable difference between conventional and stochastic occupancy models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.737&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2014 Germany, SpainPublisher:EDP Sciences Funded by:EC | ANDESEC| ANDESM. Mirea; I. F. Gonçalves; Carlos Guerrero; A. J. M. Plompen; M. Mastromarco; C. Eleftheriadis; P. E. Koehler; V. Variale; J. Marganiec; F. Gunsing; T. Ware; I. Duran; W. Mondalaers; T. Martinez; F. Cerutti; F. Calviño; M. Brugger; A. Tsinganis; A. R. García; Rugard Dressler; Alberto Mengoni; C. Carrapiço; N. Colonna; Christoph Langer; P. Vaz; G. Giubrone; Cristian Massimi; Massimo Barbagallo; R. Sarmento; Petar Žugec; A. Hernández-Prieto; A. Hernández-Prieto; D. Karadimos; Jeri Kroll; R. Vlastou; A. Manousos; Javier Praena; E. González-Romero; J. Andrzejewski; J. Billowes; Rene Reifarth; E. Leal-Cidoncha; L. Audouin; C. Lederer; C. Rubbia; L.S. Leong; Stefan Schmidt; A. Ventura; A. K. Saxena; S. Altstadt; Dorothea Schumann; A. Pavlik; A. Riego; Fabio Belloni; Marco Calviani; M. Krtička; K. Fraval; F. Mingrone; M. Sabaté-Gilarte; Thomas Rauscher; C. Domingo-Pardo; D. Tarrío; J. L. Tain; P. F. Mastinu; M. J. Vermeulen; C. Weiß; P. M. Milazzo; J. Perkowski; L. Tassan-Got; C. Paradela; G. Cortes; M. A. Cortés-Giraldo; Srinivasan Ganesan; D. Bosnar; T. J. Wright; E. Mendoza; J. M. Quesada; F. Bečvář; E. Griesmayer; G. Tagliente; V. Bécares; E. Chiaveri; E. Chiaveri; D. Cano-Ott; E. Jericha; D. G. Jenkins; Arnaud Ferrari; G. Vannini; Niko Kivel; M. P. W. Chin; M. Diakaki; Mario Weigand; Anton Wallner; F. Käppeler; Y. Kadi; C. Lampoudis; H. Leeb; S. Valenta; E. Berthoumieux; E. Berthoumieux; Peter Schillebeeckx; Roberto Losito; Vasilis Vlachoudis;The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to new highflux experimental area, now under construction.
Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAConference object . 2004License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference objectData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjconf/20137901003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 96visibility views 96 download downloads 144 Powered bymore_vert Publication Server o... arrow_drop_down Publication Server of Goethe University Frankfurt am MainArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAConference object . 2004License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference objectData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/epjconf/20137901003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Chengran Yin; Guangming Wang; Jiacheng Liao;Introduction: This paper proposes a deep learning algorithm based on the VMD-SSA-BiLSTM model for time series forecasting in the smart grid financial market. The algorithm aims to extract useful information from power grid signals to improve the timing prediction accuracy and meet the needs of sustainable innovation management.Methods: The proposed algorithm employs the variational mode decomposition (VMD) method to decompose and reduce the dimensionality of historical data, followed by singular spectrum analysis (SSA) to perform singular spectrum analysis on each intrinsic mode function component. The resulting singular value spectrum matrices serve as input to a bidirectional long short-term memory (BiLSTM) neural network, which learns the feature representation and prediction model of the smart grid financial market through forward propagation and backpropagation.Results: The experimental results demonstrate that the proposed algorithm effectively predicts the smart grid financial market's time series, achieving high prediction accuracy and stability. The approach can contribute to sustainable innovation management and the development of the smart grid.Discussion: The VMD-SSA-BiLSTM algorithm's efficiency in extracting useful information from power grid signals and avoiding overfitting can improve the accuracy of timing predictions in the smart grid financial market. The algorithm's broad application prospects can promote sustainable innovation management and contribute to the development of the smart grid.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1239542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1239542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu