- home
- Advanced Search
- Energy Research
- other engineering and technologies
- 6. Clean water
- US
- CA
- Energy Research
- other engineering and technologies
- 6. Clean water
- US
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Society of Petroleum Engineers (SPE) Authors: R.B. Chen; E.Y. Chen;doi: 10.2118/11509-pa
Summary Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations, and possible areas for improvement. These improved techniques are in use or will be implemented in the Aramco systems. Introduction Microbial corrosion has caused some failures in seawater injection systems. Whether or not microbial corrosion represents a major corrosion mechanism in the oilfield water system is a controversial question. However, it has certainly become a major concern in recent years. There are two approaches in dealing with microbial corrosion problems in a large oilfield water system. One approach is to start treating the system with bactericide in conjunction with regular scraping when the system is commissioned. The other is to treat the system only when an impending microbial-related problem is clearly defined. in either case, monitoring of microbial corrosion is essential. The first approach is more or less a precautionary measure. The treatment and selection of bactericides is usually based on past experience and laboratory evaluation tests. While the treatment is being implemented, a reliable monitoring program could assess the effectiveness of the current program of microbial corrosion control. In the second case, monitoring of microbial corrosion is even more important. it would provide timely information toward implementation of a treatment program before the system could get out of control. The industry's awareness of microbial corrosion has been indicated by the number of papers published in recent years on this subject. These articles cover a wide spectrum of interest from fundamental corrosion mechanisms to case studies, detection methods, control measures, etc. Although it is not clear to what extent microorganisms are responsible for the observed field corrosion failures, the general consensus still favors early establishment of a routine microbial corrosion monitoring program. The best approach seems to he the establishment of solid baseline data for the system after which any significant future deviation can be interpreted as a sign of a potential problem. The following sections describe the current methods used for routine monitoring, specifically for Aramco's large oilfield water systems. The limitations of these methods, the difficulties encountered, and some suggested studies for modification and improvement are discussed also. Current Monitoring Methods The methods currently used by Aramco can be categorized as (l) cell counts in water, (2) metal surface examination, (3) scraping solids analysis, (4) water quality analysis, and (5) evaluation of current bactericide treatment. Cell Counts in Water. These are used to detect bacterial organisms and their concentrations. it is recognized that confirmation of free-flowing bacteria in the water does not automatically mean trouble. However, if bacteria counts demonstrate a definite increase across the system, or over a period of time, the odds are that bacteria are active and working on the metal somewhere in the system. Cell counts routinely monitored include sulfate-reducing bacteria (SRB), general aerobic bacteria (OAB), iron bacteria, and others. SRB are widely recognized to he primarily responsible for bacteria-induced corrosion in an anaerobic environment. Depending on the nature of the sample to be tested and the types of problems encountered (or expected) in the field, one or several different enumeration techniques are employed. For field work, the method generally used by Aramco is culturing of samples in liquid growth media specifically designed for detecting a certain group of organisms. These laboratory media are prepared using the appropriate field water as a base, with addition of general growth nutrients for the organisms. The use of field water to prepare the media provides a water composition similar to that in which the bacteria originated. The media are supplemented with other ingredients to create an environment conducive to growth of certain bacteria (e.g., certain reducing agents have to he added into the SRB media). The media then are dispensed into serum vials at exactly 9 mL [9 cm3] each and sealed with rubber stoppers and aluminum seals. JPT P. 1171
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:American Society of Civil Engineers (ASCE) Authors: John M. McBee; Kyle M. High; Steven R. Abt;The cover of a disposal cell is an important element in the long-term stability of a reclaimed uranium tailings site. The cover is generally comprised of a radon barrier, filter, and surface erosion barrier. A study is conducted to investigate the drainage and erosion potential between the filter and radon barrier layer in response to surface water flows over a layer of riprap. A cover system is physically modeled in a hydraulics laboratory. The experimental program evaluated the interstitial velocity potential through four filters, the erosion and sediment transport potential from the radon barrier, and the filter drainage rate after passage of the surface runoff hydrograph. The results indicated that the use of traditional filter criteria to bed riprap is extremely conservative and restricts drainage. The grain size of the filter materials should be increased to enhance drainage when placed on flat (\IS\N ≤\N 5%) slopes. A relationship is presented for estimating the drainage velocity potential through a filter layer as a function of slope and gradation. A new filter criteria should be developed for overtopping flow conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(1991)117:2(71)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(1991)117:2(71)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Mikhail Sorin; Nicolas Galanis; Oumar Samaké;Abstract A new formulation for the evaporation, flashing, condensation processes taking place in the effects of thermal desalination systems which simulates the operation of both forward and parallel/cross configurations is coupled with an exergo-economic model based on the SPECO method. The thermo-economic model uses accurate properties for the seawater, brine, pure water and vapour and is solved with an equation solver which does not require the development of a specific solution algorithm as in most previous studies. This flexible model is used to analyze the influence of the number of effects N and the temperature difference ΔT e between effects on the technical and economic performance of multi-effect desalination systems with ejector vapour compression. In particular, it is shown that the performance calculated by an earlier black-box approach is not attainable by technically and economically realistic systems. It is also shown that for each feed configuration and a given number of effects there exists an optimum value of ΔT e which minimizes the cost of the produced potable water. This last result forms the basis of a procedure that combines black-box results with the optimum value of ΔT e and can be used to select the appropriate system for any specific application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016Publisher:SPE Authors: Nathan A. Sisemore; Emily L. Barnhill; Leslie Keiser; Peter D. Bowser;doi: 10.2118/181595-ms
Abstract The Permian Basin in West Texas contains one of the thickest deposits of Permian rocks found anywhere in the world. The Embar-B lease located in southern Andrews County on the Central Basin Platform (a regional structural high in the Permian Basin) has been producing from the Leonardian Clearfork formation for over 70 years. The Clearfork formation is primarily a subtidal and intertidal carbonate rock characterized as moderate quality reservoir. Most Permian Basin fields have multiple stacked reservoirs with varying degrees of reservoir quality and there is typically a need in these maturing fields to increase reservoir contact. In 2009, a drilling campaign was launched in Embar-B with a focus on expanding the completion interval to include what was previously considered marginal pay in the deeper Wichita Albany formation. The Wichita Albany, also Leonardian in age, is composed mostly of marginal quality tidal flat rocks and is characterized by high fracture gradients and low permeability. These characteristics required an advancement in completion practices to achieve a successful stimulation. The combination of improved completions practices and an expanded target interval resulted in production double that of previous wells. This success has driven a need for an innovative development strategy and continued optimization of completion practices. Geomodeling, volumetrics, reservoir simulation, seismic attribute analysis and oil fingerprinting were all used for reservoir characterization and to determine an allocation method for commingled wells. This lead to the identification of several Clearfork/Wichita Albany locations with significant reserves potential. Re-evaluation of the completion strategy using a multidisciplinary approach indicated the need to reduce the number of perforation clusters, add a diversion mechanism, and develop multiple hydraulic fracturing designs based on reservoir quality and presence of natural fractures. Results from recent drilling programs have exceeded expectations bringing lease production up from 200 BOEPD in 2009 to a peak rate of 3153 BOEPD in 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/181595-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/181595-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Bruce T. Kelley; Paul S. Northrop; Jaime A. Valencia; Charles J. Mart;AbstractThe Controlled Freeze Zone™ technology removes CO2 and H2S from natural gas in a single step cryogenic distillation process. Removal and management of acid gas impurities from natural gas pose significant challenges in developing sour gas fields. In many cases CFZ™ is capable of processing sour gases with a wide range of CO2 and H2S compositions at a lower cost than conventional technologies. The acidic components are removed as a high pressure liquid that can be injected into reservoirs for geosequestration or, when of suitable composition, to improve oil recovery. In either case, sulfur production from H2S and release of CO2 to the atmosphere can be eliminated.CFZ™ technology was successfully demonstrated through earlier pilot plant operations. Currently, ExxonMobil Upstream Research Company is advancing CFZ™ to large scale commercial readiness through a commercial demonstration plant in Wyoming, USA. By building the commercial demonstration plant at ExxonMobil’s world-class Shute Creek gas treating and acid gas injection facility, integration of CFZ™ with acid gas injection, will also be demonstrated when the unit is operated in 2010–2011.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Surya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; +2 AuthorsSurya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; Fahad M. Alqahtani; Faisal M. Alessa;doi: 10.3390/su151612220
The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Ramakrishna Prasad; Lakshmi Koppolu; L. Davis Clements;Abstract Synthetic hyperaccumulator biomass (SHB) impregnated with Ni, Zn, Cu, Co or Cr was used to conduct 11 experiments in a lab-scale fluidized bed reactor. Two runs with blank corn stover, with no metal added, were also conducted. The reactor was operated in an entrained mode in a oxygen-free (N2) environment at 873 K and 1 atm . The apparent gas residence time through the lab-scale reactor was 0.6 s at 873 K . The material balance for the lab-scale experiments on N2-free basis varied between 81% and 98%. The presence of a heavy metal in the SHB decreased the char yield and increased the tar yield, compared to the blank. The char and gas yields appeared to depend on the form of the metal salt used to prepare the SHB. However, the metal distribution in the product streams did not seem to be influenced by the chemical form of the metal salt used to prepare the SHB. Greater than 98.5% of the metal in the product stream was concentrated in the char formed by pyrolyzing and gasifying the SHB in the reactor. The metal concentration in the char varied between 0.7 and 15.3% depending on the type of metal in the SHB. However, the metal concentration was increased 4 to 6 times in the char compared to the feed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(03)00057-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(03)00057-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Sally Homsy; Robert C. Brown; Kaige Wang; Liliana Martinez; Sukh Sidhu;pmid: 23069615
In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu293 citations 293 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981 United StatesPublisher:Springer Science and Business Media LLC Authors: Loman, J. M.; Levy, P. W.; Swyler, K. J.;doi: 10.1557/proc-6-433
ABSTRACTRadiation damage has been studied in natural rock salt from various localities, including potential repository sites. In the 100 to 300 C range the damage consists of point defects, primarily F-centers, and colloidal metal sodium particles. With increasing dose the F-centers grow to a saturation level, reached at 107 –108 rad, that decreases with increasing temperature to a negligible level at 300 C. Colloid concentration vs. irradiation-time curves follow nucleation and growth curves accurately described by C tn, or C(dose)n, relations at large irradiation times. For fourteen samples,n = 1.85± 0.18 but the values of C vary by a factor of more than 103. The constant C is related to the sample strain, the impurity and void content, dose rate, and possibly other factors. The currently available data indicate that rock salt adjacent to radioactive waste canisters, at a temperature of 150 C, will contain between 0.01 and 10 mole percent of sodium metal when the total dose reaches 1010 rad.
MRS Proceedings arrow_drop_down MRS ProceedingsArticle . 1981 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1557/proc-6-433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert MRS Proceedings arrow_drop_down MRS ProceedingsArticle . 1981 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1557/proc-6-433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Kouichi Izumi; Yu-ki Okishio; Norio Nagao; Chiaki Niwa; Shuichi Yamamoto; Tatsuki Toda;Abstract The objective of this study was to investigate the effects of particle size reduction and solubilization on biogas production from food waste (FW). To clarify the effects of volatile fatty acids (VFAs) in the digestion process, the relationship between particle size and VFA accumulation was investigated in detail. For this purpose, substrates of various particle sizes were prepared by bead milling to support hydrolysis. Batch anaerobic digestion experiments were carried out using these pretreated substrates at mesophilic temperature for a period of 16 days. The results of pretreatment showed that the mean particle size (MPS) of substrates ground with a bead mill decreased from 0.843 to 0.391 mm, and solubilization accounted for approximately 40% of the total chemical oxygen demand (total COD) for grinding pretreatment by bead milling. Anaerobic digestion batch experiments revealed that MPS reduced by bead milling at 1000 rpm improved methane yield by 28% compared with disposer treatment. Moreover, this may have increased microbial degradation during the VFA production process with increasing total number of revolutions (operation time × revolutions per minute). However, excessive reduction of the particle size of the substrate resulted in VFA accumulation, decreased methane production, and decreased solubilization in the anaerobic digestion process. These results suggest that optimized reduction of the particle size of the substrate in conjunction with optimized microbial growth could improve the methane yield in anaerobic digestion processes.
ZENODO arrow_drop_down International Biodeterioration & BiodegradationArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ibiod.2010.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 378 citations 378 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert ZENODO arrow_drop_down International Biodeterioration & BiodegradationArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ibiod.2010.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Society of Petroleum Engineers (SPE) Authors: R.B. Chen; E.Y. Chen;doi: 10.2118/11509-pa
Summary Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations, and possible areas for improvement. These improved techniques are in use or will be implemented in the Aramco systems. Introduction Microbial corrosion has caused some failures in seawater injection systems. Whether or not microbial corrosion represents a major corrosion mechanism in the oilfield water system is a controversial question. However, it has certainly become a major concern in recent years. There are two approaches in dealing with microbial corrosion problems in a large oilfield water system. One approach is to start treating the system with bactericide in conjunction with regular scraping when the system is commissioned. The other is to treat the system only when an impending microbial-related problem is clearly defined. in either case, monitoring of microbial corrosion is essential. The first approach is more or less a precautionary measure. The treatment and selection of bactericides is usually based on past experience and laboratory evaluation tests. While the treatment is being implemented, a reliable monitoring program could assess the effectiveness of the current program of microbial corrosion control. In the second case, monitoring of microbial corrosion is even more important. it would provide timely information toward implementation of a treatment program before the system could get out of control. The industry's awareness of microbial corrosion has been indicated by the number of papers published in recent years on this subject. These articles cover a wide spectrum of interest from fundamental corrosion mechanisms to case studies, detection methods, control measures, etc. Although it is not clear to what extent microorganisms are responsible for the observed field corrosion failures, the general consensus still favors early establishment of a routine microbial corrosion monitoring program. The best approach seems to he the establishment of solid baseline data for the system after which any significant future deviation can be interpreted as a sign of a potential problem. The following sections describe the current methods used for routine monitoring, specifically for Aramco's large oilfield water systems. The limitations of these methods, the difficulties encountered, and some suggested studies for modification and improvement are discussed also. Current Monitoring Methods The methods currently used by Aramco can be categorized as (l) cell counts in water, (2) metal surface examination, (3) scraping solids analysis, (4) water quality analysis, and (5) evaluation of current bactericide treatment. Cell Counts in Water. These are used to detect bacterial organisms and their concentrations. it is recognized that confirmation of free-flowing bacteria in the water does not automatically mean trouble. However, if bacteria counts demonstrate a definite increase across the system, or over a period of time, the odds are that bacteria are active and working on the metal somewhere in the system. Cell counts routinely monitored include sulfate-reducing bacteria (SRB), general aerobic bacteria (OAB), iron bacteria, and others. SRB are widely recognized to he primarily responsible for bacteria-induced corrosion in an anaerobic environment. Depending on the nature of the sample to be tested and the types of problems encountered (or expected) in the field, one or several different enumeration techniques are employed. For field work, the method generally used by Aramco is culturing of samples in liquid growth media specifically designed for detecting a certain group of organisms. These laboratory media are prepared using the appropriate field water as a base, with addition of general growth nutrients for the organisms. The use of field water to prepare the media provides a water composition similar to that in which the bacteria originated. The media are supplemented with other ingredients to create an environment conducive to growth of certain bacteria (e.g., certain reducing agents have to he added into the SRB media). The media then are dispensed into serum vials at exactly 9 mL [9 cm3] each and sealed with rubber stoppers and aluminum seals. JPT P. 1171
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/11509-pa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:American Society of Civil Engineers (ASCE) Authors: John M. McBee; Kyle M. High; Steven R. Abt;The cover of a disposal cell is an important element in the long-term stability of a reclaimed uranium tailings site. The cover is generally comprised of a radon barrier, filter, and surface erosion barrier. A study is conducted to investigate the drainage and erosion potential between the filter and radon barrier layer in response to surface water flows over a layer of riprap. A cover system is physically modeled in a hydraulics laboratory. The experimental program evaluated the interstitial velocity potential through four filters, the erosion and sediment transport potential from the radon barrier, and the filter drainage rate after passage of the surface runoff hydrograph. The results indicated that the use of traditional filter criteria to bed riprap is extremely conservative and restricts drainage. The grain size of the filter materials should be increased to enhance drainage when placed on flat (\IS\N ≤\N 5%) slopes. A relationship is presented for estimating the drainage velocity potential through a filter layer as a function of slope and gradation. A new filter criteria should be developed for overtopping flow conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(1991)117:2(71)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/(asce)0733-9402(1991)117:2(71)&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Mikhail Sorin; Nicolas Galanis; Oumar Samaké;Abstract A new formulation for the evaporation, flashing, condensation processes taking place in the effects of thermal desalination systems which simulates the operation of both forward and parallel/cross configurations is coupled with an exergo-economic model based on the SPECO method. The thermo-economic model uses accurate properties for the seawater, brine, pure water and vapour and is solved with an equation solver which does not require the development of a specific solution algorithm as in most previous studies. This flexible model is used to analyze the influence of the number of effects N and the temperature difference ΔT e between effects on the technical and economic performance of multi-effect desalination systems with ejector vapour compression. In particular, it is shown that the performance calculated by an earlier black-box approach is not attainable by technically and economically realistic systems. It is also shown that for each feed configuration and a given number of effects there exists an optimum value of ΔT e which minimizes the cost of the produced potable water. This last result forms the basis of a procedure that combines black-box results with the optimum value of ΔT e and can be used to select the appropriate system for any specific application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.12.112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016Publisher:SPE Authors: Nathan A. Sisemore; Emily L. Barnhill; Leslie Keiser; Peter D. Bowser;doi: 10.2118/181595-ms
Abstract The Permian Basin in West Texas contains one of the thickest deposits of Permian rocks found anywhere in the world. The Embar-B lease located in southern Andrews County on the Central Basin Platform (a regional structural high in the Permian Basin) has been producing from the Leonardian Clearfork formation for over 70 years. The Clearfork formation is primarily a subtidal and intertidal carbonate rock characterized as moderate quality reservoir. Most Permian Basin fields have multiple stacked reservoirs with varying degrees of reservoir quality and there is typically a need in these maturing fields to increase reservoir contact. In 2009, a drilling campaign was launched in Embar-B with a focus on expanding the completion interval to include what was previously considered marginal pay in the deeper Wichita Albany formation. The Wichita Albany, also Leonardian in age, is composed mostly of marginal quality tidal flat rocks and is characterized by high fracture gradients and low permeability. These characteristics required an advancement in completion practices to achieve a successful stimulation. The combination of improved completions practices and an expanded target interval resulted in production double that of previous wells. This success has driven a need for an innovative development strategy and continued optimization of completion practices. Geomodeling, volumetrics, reservoir simulation, seismic attribute analysis and oil fingerprinting were all used for reservoir characterization and to determine an allocation method for commingled wells. This lead to the identification of several Clearfork/Wichita Albany locations with significant reserves potential. Re-evaluation of the completion strategy using a multidisciplinary approach indicated the need to reduce the number of perforation clusters, add a diversion mechanism, and develop multiple hydraulic fracturing designs based on reservoir quality and presence of natural fractures. Results from recent drilling programs have exceeded expectations bringing lease production up from 200 BOEPD in 2009 to a peak rate of 3153 BOEPD in 2015.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/181595-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/181595-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Bruce T. Kelley; Paul S. Northrop; Jaime A. Valencia; Charles J. Mart;AbstractThe Controlled Freeze Zone™ technology removes CO2 and H2S from natural gas in a single step cryogenic distillation process. Removal and management of acid gas impurities from natural gas pose significant challenges in developing sour gas fields. In many cases CFZ™ is capable of processing sour gases with a wide range of CO2 and H2S compositions at a lower cost than conventional technologies. The acidic components are removed as a high pressure liquid that can be injected into reservoirs for geosequestration or, when of suitable composition, to improve oil recovery. In either case, sulfur production from H2S and release of CO2 to the atmosphere can be eliminated.CFZ™ technology was successfully demonstrated through earlier pilot plant operations. Currently, ExxonMobil Upstream Research Company is advancing CFZ™ to large scale commercial readiness through a commercial demonstration plant in Wyoming, USA. By building the commercial demonstration plant at ExxonMobil’s world-class Shute Creek gas treating and acid gas injection facility, integration of CFZ™ with acid gas injection, will also be demonstrated when the unit is operated in 2010–2011.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.01.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Surya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; +2 AuthorsSurya Pratap Singh; Meena Kumari Sharma; Shatrudhan Pandey; S. M. Mozammil Hasnain; Fahad M. Alqahtani; Faisal M. Alessa;doi: 10.3390/su151612220
The growing population and increasing urbanization have led to a surge in domestic wastewater generation, posing significant challenges for effective and sustainable treatment. The present study demonstrates a novel and sustainable approach for the onsite treatment of domestic wastewater using an integrated settler-based biofilm reactor (ISBR) with efficient biogas generation. The ISBR provides an optimized environment for the growth of biofilm, facilitating the removal of organic pollutants and pathogens. Moreover, the ISBR enables the recovery of a valuable resource in the form of biogas, thus enhancing the overall utility of the treatment process. The performance of the ISBR was comprehensively evaluated at laboratory scale through treating the actual domestic wastewater generated from the hostel of Manipal University Jaipur. The ISBR system was operated under an ambient environment at a hydraulic retention time (HRT) of 24 h. The results demonstrated remarkable efficiency in terms of chemical oxygen demand (COD), total suspended solids (TSS), and coliforms removal, with average removal efficiency being more than 90%. According to the COD mass balance analysis, 48.2% of the influent COD was recovered as bioenergy. The chromatogram revealed a high percentage of methane gas in the collected biogas sample. The field emission scanning electron microscope (FESEM) analysis of the accumulated sludge in the ISBR system depicted the morphology of methanogenic bacteria. Both the experimental and theoretical results confirmed the feasibility and sustainability of the ISBR system at the onsite level.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151612220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Ramakrishna Prasad; Lakshmi Koppolu; L. Davis Clements;Abstract Synthetic hyperaccumulator biomass (SHB) impregnated with Ni, Zn, Cu, Co or Cr was used to conduct 11 experiments in a lab-scale fluidized bed reactor. Two runs with blank corn stover, with no metal added, were also conducted. The reactor was operated in an entrained mode in a oxygen-free (N2) environment at 873 K and 1 atm . The apparent gas residence time through the lab-scale reactor was 0.6 s at 873 K . The material balance for the lab-scale experiments on N2-free basis varied between 81% and 98%. The presence of a heavy metal in the SHB decreased the char yield and increased the tar yield, compared to the blank. The char and gas yields appeared to depend on the form of the metal salt used to prepare the SHB. However, the metal distribution in the product streams did not seem to be influenced by the chemical form of the metal salt used to prepare the SHB. Greater than 98.5% of the metal in the product stream was concentrated in the char formed by pyrolyzing and gasifying the SHB in the reactor. The metal concentration in the char varied between 0.7 and 15.3% depending on the type of metal in the SHB. However, the metal concentration was increased 4 to 6 times in the char compared to the feed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(03)00057-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu104 citations 104 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(03)00057-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Sally Homsy; Robert C. Brown; Kaige Wang; Liliana Martinez; Sukh Sidhu;pmid: 23069615
In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu293 citations 293 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.08.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981 United StatesPublisher:Springer Science and Business Media LLC Authors: Loman, J. M.; Levy, P. W.; Swyler, K. J.;doi: 10.1557/proc-6-433
ABSTRACTRadiation damage has been studied in natural rock salt from various localities, including potential repository sites. In the 100 to 300 C range the damage consists of point defects, primarily F-centers, and colloidal metal sodium particles. With increasing dose the F-centers grow to a saturation level, reached at 107 –108 rad, that decreases with increasing temperature to a negligible level at 300 C. Colloid concentration vs. irradiation-time curves follow nucleation and growth curves accurately described by C tn, or C(dose)n, relations at large irradiation times. For fourteen samples,n = 1.85± 0.18 but the values of C vary by a factor of more than 103. The constant C is related to the sample strain, the impurity and void content, dose rate, and possibly other factors. The currently available data indicate that rock salt adjacent to radioactive waste canisters, at a temperature of 150 C, will contain between 0.01 and 10 mole percent of sodium metal when the total dose reaches 1010 rad.
MRS Proceedings arrow_drop_down MRS ProceedingsArticle . 1981 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1557/proc-6-433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert MRS Proceedings arrow_drop_down MRS ProceedingsArticle . 1981 . Peer-reviewedLicense: Cambridge Core User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1557/proc-6-433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Kouichi Izumi; Yu-ki Okishio; Norio Nagao; Chiaki Niwa; Shuichi Yamamoto; Tatsuki Toda;Abstract The objective of this study was to investigate the effects of particle size reduction and solubilization on biogas production from food waste (FW). To clarify the effects of volatile fatty acids (VFAs) in the digestion process, the relationship between particle size and VFA accumulation was investigated in detail. For this purpose, substrates of various particle sizes were prepared by bead milling to support hydrolysis. Batch anaerobic digestion experiments were carried out using these pretreated substrates at mesophilic temperature for a period of 16 days. The results of pretreatment showed that the mean particle size (MPS) of substrates ground with a bead mill decreased from 0.843 to 0.391 mm, and solubilization accounted for approximately 40% of the total chemical oxygen demand (total COD) for grinding pretreatment by bead milling. Anaerobic digestion batch experiments revealed that MPS reduced by bead milling at 1000 rpm improved methane yield by 28% compared with disposer treatment. Moreover, this may have increased microbial degradation during the VFA production process with increasing total number of revolutions (operation time × revolutions per minute). However, excessive reduction of the particle size of the substrate resulted in VFA accumulation, decreased methane production, and decreased solubilization in the anaerobic digestion process. These results suggest that optimized reduction of the particle size of the substrate in conjunction with optimized microbial growth could improve the methane yield in anaerobic digestion processes.
ZENODO arrow_drop_down International Biodeterioration & BiodegradationArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ibiod.2010.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 378 citations 378 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert ZENODO arrow_drop_down International Biodeterioration & BiodegradationArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ibiod.2010.06.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu