- home
- Advanced Search
Filters
Clear All- Energy Research
- 2025-2025
- Open Access
- Embargo
- US
- CN
- Energy Research
- 2025-2025
- Open Access
- Embargo
- US
- CN
description Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Funded by:NSF | CAREER: Computation-effic...NSF| CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration AnalysisAuthors: Ning Qi; Kaidi Huang; Zhiyuan Fan; Bolun Xu;This paper studies the long-term energy management of a microgrid coordinating hybrid hydrogen-battery energy storage. We develop an approximate semi-empirical hydrogen storage model to accurately capture the power-dependent efficiency of hydrogen storage. We introduce a prediction-free two-stage coordinated optimization framework, which generates the annual state-of-charge (SoC) reference for hydrogen storage offline. During online operation, it updates the SoC reference online using kernel regression and makes operation decisions based on the proposed adaptive virtual-queue-based online convex optimization (OCO) algorithm. We innovatively incorporate penalty terms for long-term pattern tracking and expert-tracking for step size updates. We provide theoretical proof to show that the proposed OCO algorithm achieves a sublinear bound of dynamic regret without using prediction information. Numerical studies based on the Elia and North China datasets show that the proposed framework significantly outperforms the existing online optimization approaches by reducing the operational costs and loss of load by around 30% and 80%, respectively. These benefits can be further enhanced with optimized settings for the penalty coefficient and step size of OCO, as well as more historical references. Submitted to Applied Energy
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Amam Hossain Bagdadee; Argho Moy Maitraya; Ariful Islam; Md. Noor E Alam Siddique;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Lidang Jiang; Changyan Hu; Sibei Ji; Hang Zhao; Junxiong Chen; Ge He;In optimizing performance and extending the lifespan of lithium batteries, accurate state prediction is pivotal. Traditional regression and classification methods have achieved some success in battery state prediction. However, the efficacy of these data-driven approaches heavily relies on the availability and quality of public datasets. Additionally, generating electrochemical data predominantly through battery experiments is a lengthy and costly process, making it challenging to acquire high-quality electrochemical data. This difficulty, coupled with data incompleteness, significantly impacts prediction accuracy. Addressing these challenges, this study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models. By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE). Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity, which is then processed by the RCVAE model. Coupled with customized training and inference algorithms, this model can generate specific electrochemical data for EOL and ECL under supervised conditions. This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data. Furthermore, based on the detailed synthetic data, various battery state indicators can be calculated, offering new perspectives and possibilities for lithium battery performance prediction.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Authors: Xin Chen; Todd Karin; Anubhav Jain;Solar modules in utility-scale systems are expected to maintain decades of lifetime to rival conventional energy sources. However, cyclic thermomechanical loading often degrades their long-term performance, highlighting the importance of effective design to mitigate thermal expansion mismatches between module materials. Given the complex composition of solar modules, isolating the impact of individual components on overall durability remains a challenging task. In this work, we analyze a comprehensive data set that comprises bill-of-materials (BOM) and thermal cycling power loss from 251 distinct module designs to identify the predominant design factors and their impacts on the thermomechanical durability of modules. The methodology of our analysis combines machine learning modeling (random forest) and Shapley additive explanation (SHAP) to correlate design factors with power loss and interpret the model's decision-making. The interpretation reveals that silicon type (monocrystalline or polycrystalline), encapsulant thickness, busbar numbers, and wafer thickness predominantly influence the degradation. With lower power loss of around 0.6\% on average in the SHAP analysis, monocrystalline cells present better durability than polycrystalline cells. This finding is further substantiated by statistical testing on our raw data set. The SHAP analysis also demonstrates that while thicker encapsulants lead to reduced power loss, further increasing their thickness over around 0.6 to 0.7mm does not yield additional benefits, particularly for the front side one. In addition, other important BOM features such as the number of busbars are analyzed. This study provides a blueprint for utilizing explainable machine learning techniques in a complex material system and can potentially guide future research on optimizing the design of solar modules.
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Guilong Peng; Senshan Sun; Zhenwei Xu; Juxin Du; Yangjun Qin; Swellam W. Sharshir; A.W. Kandeal; A.E. Kabeel; Nuo Yang;Machine learning's application in solar-thermal desalination is limited by data shortage and inconsistent analysis. This study develops an optimized dataset collection and analysis process for the representative solar still. By ultra-hydrophilic treatment on the condensation cover, the dataset collection process reduces the collection time by 83.3%. Over 1,000 datasets are collected, which is nearly one order of magnitude larger than up-to-date works. Then, a new interdisciplinary process flow is proposed. Some meaningful results are obtained that were not addressed by previous studies. It is found that Radom Forest might be a better choice for datasets larger than 1,000 due to both high accuracy and fast speed. Besides, the dataset range affects the quantified importance (weighted value) of factors significantly, with up to a 115% increment. Moreover, the results show that machine learning has a high accuracy on the extrapolation prediction of productivity, where the minimum mean relative prediction error is just around 4%. The results of this work not only show the necessity of the dataset characteristics' effect but also provide a standard process for studying solar-thermal desalination by machine learning, which would pave the way for interdisciplinary study.
arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Funded by:NSF | DESC: Type I: Minimizing ...NSF| DESC: Type I: Minimizing Carbon Footprint by Co-designing Data Centers with Sustainable Power GridsAuthors: Osten Anderson; Mikhail A. Bragin; Nanpeng Yu;With California's ambitious goal to achieve decarbonization of the electrical grid by the year 2045, significant challenges arise in power system investment planning. Existing modeling methods and software focus on computational efficiency, which is currently achieved by simplifying the associated unit commitment formulation. This may lead to unjustifiable inaccuracies in the cost and constraints of gas-fired generation operations, and may affect both the timing and the extent of investment in new resources, such as renewable energy and energy storage. To address this issue, this paper develops a more detailed and rigorous mixed-integer model, and more importantly, a solution methodology utilizing surrogate level-based Lagrangian relaxation to overcome the combinatorial complexity that results from the enhanced level of model detail. This allows us to optimize a model with approximately 12 million binary and 100 million total variables in under 48 hours. The investment plan is compared with those produced by E3's RESOLVE software, which is currently employed by the California Energy Commission and California Public Utilities Commission. Our model produces an investment plan that differs substantially from that of the existing method and saves California over 12 billion dollars over the investment horizon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; Pie, Marcio. R; Murray, Kris. A; Pethiyagoda, Rohan; Hanken, James; Meegaskumbura, Madhava;Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Publisher:Elsevier BV Omar J. Guerra; Sourabh Dalvi; Amogh Thatte; Brady Cowiestoll; Jennie Jorgenson; Bri-Mathias Hodge;arXiv: 2401.16605
Existing modeling approaches for long-duration energy storage (LDES) are often based either on an oversimplified representation of power system operations or limited representation of storage technologies, e.g., evaluation of only a single application. This manuscript presents an overview of the challenges of modeling LDES technologies, as well as a discussion regarding the capabilities and limitations of existing approaches. We used two test power systems with high shares of both solar photovoltaics- and wind (70% - 90% annual variable renewable energy shares) to assess LDES dispatch approaches. Our results estimate that better dispatch modeling of LDES could increase the associated operational value by 4% - 14% and increase the standard capacity credit by 14% - 34%. Thus, a better LDES dispatch could represent significant cost saving opportunities for electric utilities and system operators. In addition, existing LDES dispatch modeling approaches were tested in terms of both improved system value (e.g., based on production cost and standard capacity credit) and scalability (e.g., based on central processing unit time and peak memory usage). Both copper plate and nodal representations of the power system were considered. Although the end volume target dispatch approach, i.e., based on mid-term scheduling, showed promising performance in terms of both improved system value and scalability, there is a need for robust and scalable dispatch approaches for LDES in transmission-constrained electric grids. Moreover, more research is required to better understand the optimal operation of LDES considering extreme climate/weather events, reliability applications, and power system operational uncertainties. Comment: 45 pages, 16 figures, Submitted to Renewable and Sustainable Energy Reviews
arXiv.org e-Print Ar... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Chunxiao Zhang; Yingbo Zhang; Jihong Pu; Zhengguang Liu; Zhanwei Wang; Lin Wang;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Man Fan; Houze Jiang; Jia Wang; Han Li; Fengyun Jin; Xiangfei Kong;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Funded by:NSF | CAREER: Computation-effic...NSF| CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration AnalysisAuthors: Ning Qi; Kaidi Huang; Zhiyuan Fan; Bolun Xu;This paper studies the long-term energy management of a microgrid coordinating hybrid hydrogen-battery energy storage. We develop an approximate semi-empirical hydrogen storage model to accurately capture the power-dependent efficiency of hydrogen storage. We introduce a prediction-free two-stage coordinated optimization framework, which generates the annual state-of-charge (SoC) reference for hydrogen storage offline. During online operation, it updates the SoC reference online using kernel regression and makes operation decisions based on the proposed adaptive virtual-queue-based online convex optimization (OCO) algorithm. We innovatively incorporate penalty terms for long-term pattern tracking and expert-tracking for step size updates. We provide theoretical proof to show that the proposed OCO algorithm achieves a sublinear bound of dynamic regret without using prediction information. Numerical studies based on the Elia and North China datasets show that the proposed framework significantly outperforms the existing online optimization approaches by reducing the operational costs and loss of load by around 30% and 80%, respectively. These benefits can be further enhanced with optimized settings for the penalty coefficient and step size of OCO, as well as more historical references. Submitted to Applied Energy
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Amam Hossain Bagdadee; Argho Moy Maitraya; Ariful Islam; Md. Noor E Alam Siddique;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Lidang Jiang; Changyan Hu; Sibei Ji; Hang Zhao; Junxiong Chen; Ge He;In optimizing performance and extending the lifespan of lithium batteries, accurate state prediction is pivotal. Traditional regression and classification methods have achieved some success in battery state prediction. However, the efficacy of these data-driven approaches heavily relies on the availability and quality of public datasets. Additionally, generating electrochemical data predominantly through battery experiments is a lengthy and costly process, making it challenging to acquire high-quality electrochemical data. This difficulty, coupled with data incompleteness, significantly impacts prediction accuracy. Addressing these challenges, this study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models. By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE). Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity, which is then processed by the RCVAE model. Coupled with customized training and inference algorithms, this model can generate specific electrochemical data for EOL and ECL under supervised conditions. This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data. Furthermore, based on the detailed synthetic data, various battery state indicators can be calculated, offering new perspectives and possibilities for lithium battery performance prediction.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Authors: Xin Chen; Todd Karin; Anubhav Jain;Solar modules in utility-scale systems are expected to maintain decades of lifetime to rival conventional energy sources. However, cyclic thermomechanical loading often degrades their long-term performance, highlighting the importance of effective design to mitigate thermal expansion mismatches between module materials. Given the complex composition of solar modules, isolating the impact of individual components on overall durability remains a challenging task. In this work, we analyze a comprehensive data set that comprises bill-of-materials (BOM) and thermal cycling power loss from 251 distinct module designs to identify the predominant design factors and their impacts on the thermomechanical durability of modules. The methodology of our analysis combines machine learning modeling (random forest) and Shapley additive explanation (SHAP) to correlate design factors with power loss and interpret the model's decision-making. The interpretation reveals that silicon type (monocrystalline or polycrystalline), encapsulant thickness, busbar numbers, and wafer thickness predominantly influence the degradation. With lower power loss of around 0.6\% on average in the SHAP analysis, monocrystalline cells present better durability than polycrystalline cells. This finding is further substantiated by statistical testing on our raw data set. The SHAP analysis also demonstrates that while thicker encapsulants lead to reduced power loss, further increasing their thickness over around 0.6 to 0.7mm does not yield additional benefits, particularly for the front side one. In addition, other important BOM features such as the number of busbars are analyzed. This study provides a blueprint for utilizing explainable machine learning techniques in a complex material system and can potentially guide future research on optimizing the design of solar modules.
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Guilong Peng; Senshan Sun; Zhenwei Xu; Juxin Du; Yangjun Qin; Swellam W. Sharshir; A.W. Kandeal; A.E. Kabeel; Nuo Yang;Machine learning's application in solar-thermal desalination is limited by data shortage and inconsistent analysis. This study develops an optimized dataset collection and analysis process for the representative solar still. By ultra-hydrophilic treatment on the condensation cover, the dataset collection process reduces the collection time by 83.3%. Over 1,000 datasets are collected, which is nearly one order of magnitude larger than up-to-date works. Then, a new interdisciplinary process flow is proposed. Some meaningful results are obtained that were not addressed by previous studies. It is found that Radom Forest might be a better choice for datasets larger than 1,000 due to both high accuracy and fast speed. Besides, the dataset range affects the quantified importance (weighted value) of factors significantly, with up to a 115% increment. Moreover, the results show that machine learning has a high accuracy on the extrapolation prediction of productivity, where the minimum mean relative prediction error is just around 4%. The results of this work not only show the necessity of the dataset characteristics' effect but also provide a standard process for studying solar-thermal desalination by machine learning, which would pave the way for interdisciplinary study.
arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2024.126365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023Publisher:Elsevier BV Funded by:NSF | DESC: Type I: Minimizing ...NSF| DESC: Type I: Minimizing Carbon Footprint by Co-designing Data Centers with Sustainable Power GridsAuthors: Osten Anderson; Mikhail A. Bragin; Nanpeng Yu;With California's ambitious goal to achieve decarbonization of the electrical grid by the year 2045, significant challenges arise in power system investment planning. Existing modeling methods and software focus on computational efficiency, which is currently achieved by simplifying the associated unit commitment formulation. This may lead to unjustifiable inaccuracies in the cost and constraints of gas-fired generation operations, and may affect both the timing and the extent of investment in new resources, such as renewable energy and energy storage. To address this issue, this paper develops a more detailed and rigorous mixed-integer model, and more importantly, a solution methodology utilizing surrogate level-based Lagrangian relaxation to overcome the combinatorial complexity that results from the enhanced level of model detail. This allows us to optimize a model with approximately 12 million binary and 100 million total variables in under 48 hours. The investment plan is compared with those produced by E3's RESOLVE software, which is currently employed by the California Energy Commission and California Public Utilities Commission. Our model produces an investment plan that differs substantially from that of the existing method and saves California over 12 billion dollars over the investment horizon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Ellepola, Gajaba; Herath, Jayampathi; Dan, Sun; Mao, Tingru; Pie, Marcio. R; Murray, Kris. A; Pethiyagoda, Rohan; Hanken, James; Meegaskumbura, Madhava;Climate change, along with infectious diseasespathogens notably Batrachochytrium dendrobatidis (Bd), B. salamandrivorans (Bsal), Ranavirus, and PerkinseaPerkinsus, continue to devastate global amphibian populations, contributing to the greatest vertebrate extinctions of the Anthropocene. These pathogens, primarily favoring cooler, subtropical conditions, demonstrate a significant overlap in their climatic niches, thus affecting a broad range species. Here, we aim to explore the role of global warming and other climatic factors in the dispersal and evolution of these pathogens and to predict the future implications for amphibian populations worldwide. Given the limitations of data availability We conducted a thorough analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens using the currently available distributional data, including our own. We used , We engaged in a comprehensive analysis of the climatic niche conservatism (NC) and evolution (CNE) of these pathogens, utilizing predictive models to anticipate potential shifts in their future distribution and evaluate the capacity for CNE in response to climate change. We show that Bd and Bsal are likely to experience a total reduction in their current potential distributions by 2040, while Ranavirus and PerkinseaPerkinsus may expand their distributions. Interestingly, CNE has played a significant role in influencing the climatic niches of Bd and Bsal, with lineage dependent variations. However, there was no strong correlation found between virulence of Bd and its climatic niche. On the contrary, ranaviruses Ranaviruses and PerkinseaPerkinsus showed evidence of sporadic and recent CNE. Moreover, the emergence of lineages adapted to warmer climates suggests an ongoing CNE and a potential evolutionary response to climate change. With increased infection risk, particularly for Asian amphibians (from Ranavirus and PerkinseaPerkinsus), and the vulnerability of the southern hemisphere (except Bsal) due to limited prior exposure, this study underscores the urgent need for close monitoring and preventive measures, including stringent biosecurity protocols such as risk analysis and pre-border pathogen screening. Our study provides a critical framework for international collaboration and guideline development for amphibian trade, while contributing to the deeper dialogue on mitigating impacts of climate change on wildlife diseases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.11381012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Publisher:Elsevier BV Omar J. Guerra; Sourabh Dalvi; Amogh Thatte; Brady Cowiestoll; Jennie Jorgenson; Bri-Mathias Hodge;arXiv: 2401.16605
Existing modeling approaches for long-duration energy storage (LDES) are often based either on an oversimplified representation of power system operations or limited representation of storage technologies, e.g., evaluation of only a single application. This manuscript presents an overview of the challenges of modeling LDES technologies, as well as a discussion regarding the capabilities and limitations of existing approaches. We used two test power systems with high shares of both solar photovoltaics- and wind (70% - 90% annual variable renewable energy shares) to assess LDES dispatch approaches. Our results estimate that better dispatch modeling of LDES could increase the associated operational value by 4% - 14% and increase the standard capacity credit by 14% - 34%. Thus, a better LDES dispatch could represent significant cost saving opportunities for electric utilities and system operators. In addition, existing LDES dispatch modeling approaches were tested in terms of both improved system value (e.g., based on production cost and standard capacity credit) and scalability (e.g., based on central processing unit time and peak memory usage). Both copper plate and nodal representations of the power system were considered. Although the end volume target dispatch approach, i.e., based on mid-term scheduling, showed promising performance in terms of both improved system value and scalability, there is a need for robust and scalable dispatch approaches for LDES in transmission-constrained electric grids. Moreover, more research is required to better understand the optimal operation of LDES considering extreme climate/weather events, reliability applications, and power system operational uncertainties. Comment: 45 pages, 16 figures, Submitted to Renewable and Sustainable Energy Reviews
arXiv.org e-Print Ar... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.114940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Chunxiao Zhang; Yingbo Zhang; Jihong Pu; Zhengguang Liu; Zhanwei Wang; Lin Wang;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.08.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Man Fan; Houze Jiang; Jia Wang; Han Li; Fengyun Jin; Xiangfei Kong;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu