- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 6. Clean water
- US
- KR
- DE
- Energies
- Energy Research
- 7. Clean energy
- 6. Clean water
- US
- KR
- DE
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 GermanyPublisher:MDPI AG Authors: Jonathan Banks; Spencer Poulette;
Jens Grimmer; Jens Grimmer
Jens Grimmer in OpenAIRE
Florian Bauer; +1 AuthorsFlorian Bauer
Florian Bauer in OpenAIREJonathan Banks; Spencer Poulette;
Jens Grimmer; Jens Grimmer
Jens Grimmer in OpenAIRE
Florian Bauer; Florian Bauer
Florian Bauer in OpenAIRE
Eva Schill; Eva Schill
Eva Schill in OpenAIREThe campus of the Karlsruhe Institute of Technology (KIT) contains several waste heat streams. In an effort to reduce greenhouse gas emissions by optimizing thermal power consumption on the campus, researchers at the KIT are proposing a ‘DeepStor’ project, which will sequester waste heat from these streams in an underground reservoir during the summer months, when the heat is not required. The stored heat will then be reproduced in the winter, when the campus’s thermal power demand is much higher. This paper contains a preliminary geochemical risk assessment for the operation of this subsurface, seasonal geothermal energy storage system. We used equilibrium thermodynamics to determine the potential phases and extent of mineral scale formation in the plant’s surface infrastructure, and to identify possible precipitation, dissolution, and ion exchange reactions that may lead to formation damage in the reservoir. The reservoir in question is the Meletta Beds of the Upper Rhein Graben’s Froidefontaine Formation. We modeled scale- and formation damage-causing reactions during six months of injecting 140 °C fluid into the reservoir during the summer thermal storage season and six months of injecting 80 °C fluid during the winter thermal consumption season. Overall, we ran the models for 5 years. Anhydrite and calcite are expected mineral scales during the thermal storage season (summer). Quartz is the predicted scale-forming mineral during the thermal consumption period (winter). Within ~20 m of the wellbores, magnesium and iron are leached from biotite; calcium and magnesium are leached from dolomite; and sodium, aluminum, and silica are leached from albite. These reactions lead to a net increase in both porosity and permeability in the wellbore adjacent region. At a distance of ~20–75 m from the wellbores, the leached ions recombine with the reservoir rocks to form a variety of clays, i.e., saponite, minnesotaite, and daphnite. These alteration products lead to a net loss in porosity and permeability in this zone. After each thermal storage and production cycle, the reservoir shows a net retention of heat, suggesting that the operation of the proposed DeepStor project could successfully store heat, if the geochemical risks described in this paper can managed.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6089/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196089&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6089/pdfData sources: Multidisciplinary Digital Publishing InstituteKITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196089&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors:
Haider Ali; Haider Ali
Haider Ali in OpenAIRE
Taqi Cheema; Taqi Cheema
Taqi Cheema in OpenAIRE
Cheol Park; Cheol Park
Cheol Park in OpenAIREdoi: 10.3390/en11020388
Turbulent flow mixing is essential in optimizing microalgal cultivation in raceway ponds. Microalgal cells are however highly sensitive to hydrodynamic stresses produced by turbulent mixing because of their small size. The mechanical properties (wall deformation and von Misses stress) of the microalgal cell wall structure under the influence of turbulent mixing are yet to be explored. High turbulence magnitudes damage microalgal cell walls by adversely affecting their mechanical properties which consequently destroy the microalgal cells and reduce the biofuel production. Therefore, such a study is required to improve the biofuel productivity of microalgal cells before their cell wall damage in raceway pond. This study developed a novel fluid–structure interaction (FSI)-based numerical model to investigate the effects of turbulent mixing on the cell wall damage of microalgal cells in raceway ponds. The study investigated microalgal cell wall damage at four different locations in a raceway pond in consideration of the effects of pond’s hydrodynamic and geometric properties. An experiment was conducted with a laboratory-scale raceway pond to compare and validate the numerical results by using time-dependent water velocities. Microalgal cell wall shear stress, cell wall deformation, and von Misses stress in the raceway pond were investigated by considering the effects of aspect ratios, water depths, and paddle wheel rotational speeds. Results showed that the proposed numerical model can be used as a prerequisite method for the selection of appropriate turbulent mixing. Microalgal cell wall damage is high in shallow and narrow raceway ponds with high paddle rotational speeds.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/388/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020388&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/2/388/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11020388&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 United KingdomPublisher:MDPI AG Authors:
Yakubu Abdul-Salam; Yakubu Abdul-Salam
Yakubu Abdul-Salam in OpenAIRE
Melf-Hinrich Ehlers; Jelte Harnmeijer;Melf-Hinrich Ehlers
Melf-Hinrich Ehlers in OpenAIREdoi: 10.3390/en10091416
handle: 2164/14384
Marginal farm land is land characterised by low food, feed and fodder crop productivity due to soil and environmental limitations. Such land may however be utilised for bio-energy crop production. We investigate the economic viability of small scale combined heat and power anaerobic digestion (CHP AD) projects based on feedstock from farm waste and bio-energy crops grown on a representative temperate latitude marginal farm land in the UK. Using a realistic set of five project feedstock-mix scenarios, and considering standard technology and current market and policy regimes, we deploy a stochastic framework to assess prices of electricity required for these projects to break-even and conduct sensitivity analyses of key project parameters. Accounting for the current market prices and policy tariffs for heat, we find that critical electricity sale prices of about 17.46 p/kWh to 27.12 p/kWh are needed for the projects to break even. These prices are well above the current combined feed-in-tariff support and market prices for electricity over the past years in the UK. We conclude that the use of marginal land to generate power for export using small-scale CHP AD in the UK and the wider temperate latitude countries is unviable, if energy and farming policy regimes do not provide substantial support.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1416/pdfData sources: Multidisciplinary Digital Publishing InstituteAberdeen University Research Archive (AURA)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/2164/14384Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091416&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/9/1416/pdfData sources: Multidisciplinary Digital Publishing InstituteAberdeen University Research Archive (AURA)Article . 2017License: CC BYFull-Text: https://hdl.handle.net/2164/14384Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091416&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Korea (Republic of)Publisher:MDPI AG Authors: Agyeman, Kofi; Han, Sekyung; Han, Soohee;doi: 10.3390/en8099029
The concern of energy price hikes and the impact of climate change because of energy generation and usage forms the basis for residential building energy conservation. Existing energy meters do not provide much information about the energy usage of the individual appliance apart from its power rating. The detection of the appliance energy usage will not only help in energy conservation, but also facilitate the demand response (DR) market participation as well as being one way of building energy conservation. However, energy usage by individual appliance is quite difficult to estimate. This paper proposes a novel approach: an unsupervised disaggregation method, which is a variant of the hidden Markov model (HMM), to detect an appliance and its operation state based on practicable measurable parameters from the household energy meter. Performing experiments in a practical environment validates our proposed method. Our results show that our model can provide appliance detection and power usage information in a non-intrusive manner, which is ideal for enabling power conservation efforts and participation in the demand response market.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/9/9029/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8099029&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/9/9029/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8099029&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG doi: 10.3390/en12152983
Avoiding irreversible climate change as effectively as possible is one of the most pressing challenges of society. Carbon pricing that is uniformly valid on a global and cross-sectoral basis represents a cost-efficient policy tool to meet this challenge. Carbon pricing allows external costs to be allocated or internalized on a polluter-pays principle. It is shown that a global emissions cap-and-trade system is the most suitable market-based instrument for reducing global emissions levels, in line with the temperature goal set by the Paris Agreement. A proposal for its design is presented in this paper. This instrument encourages worldwide measures, with the lowest marginal abatement cost, according to a pre-defined reduction path. Thereby, it ensures compliance with a specified remaining carbon budget to meet a certain temperature limit in a cost-efficient manner. Possible reduction paths are presented in this paper. Weaknesses in the design of existing emissions trading systems (ETS), such as the EU ETS, are identified and avoided in the proposed instrument. The framework solves several problems of today’s climate change policies, like the free rider problem, carbon leakage, rebound effects or the green paradox. The introduction of a global uniform carbon pricing instrument and its concrete design should be the subject of policy, especially at the United Nations climate change conferences, as soon as possible in order to allow for rapid implementation. If a global ETS with a uniform carbon price could be introduced, additional governmental regulations with regard to carbon emissions would become obsolete.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/15/2983/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/15/2983/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12152983&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:
Seongmin Kang; Seongmin Kang
Seongmin Kang in OpenAIRE
Seonghum Cho; Joonyoung Roh;Seonghum Cho
Seonghum Cho in OpenAIRE
Eui-chan Jeon; Eui-chan Jeon
Eui-chan Jeon in OpenAIREdoi: 10.3390/en13051220
This study has statistically analyzed the effect of boiler type and model year on CH4 emission factors, focusing on liquefied natural gas (LNG)—the most commonly used fuel in South Korean manufacturing combustion facilities. Samples were collected from the boilers of 39 manufacturing combustion facilities that use LNG fuel. The CH4 emission factors were developed based on 4 overhead fire-tube boilers, 14 once-through boilers, 14 vertical boilers with vertical water tubes, and 7 other boilers. This resulted in an average value of 0.11 CH4 kg/TJ, which is considerably lower than the Intergovernmental Panel on Climate Change (IPCC) 1996 guidelines(G/L) emission factor of 5 CH4 kg/TJ currently used in South Korea. In the Kruskal–Wallis test results, the significance probability was greater than 0.05 for the boiler types and ages, and there was no major difference in the average distributions, according to the boiler type or age. Therefore, according to the results of this study, the differences in the CH4 emission factors according to the boiler types and ages are not statistically large, and it was determined that there is no major difference even when the emission factors are applied to different fuel types. However, there was a major difference when the developed factors were compared to the CH4 emission factor proposed by the IPCC. Thus, there is a need to develop manufacturing combustion CH4 emission factors that reflect national characteristics.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1220/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051220&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1220/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051220&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:MDPI AG Funded by:NSF | CAREER: A Hierarchical Re..., NSF | Power Engineering Educati...NSF| CAREER: A Hierarchical Restructuring Operation Framework for Sustainable and Resilient Electricity Distribution Systems ,NSF| Power Engineering Education for the Next-Generation Smart Grid Workforcedoi: 10.3390/en17051253
The growing integration of renewable energy sources, especially offshore wind (OSW), is introducing frequency stability challenges to electric power grids. This paper presents a novel hybrid deloading control strategy that enables modular multilevel converter (MMC)-based wind energy conversion systems (WECSs) to actively contribute to grid frequency regulation. This research investigates a permanent-magnet synchronous generator (PMSG)-based direct-drive configuration, sourced from the International Energy Agency’s (IEA’s) 15 MW reference turbine model. Specifically, phase-locked loop (PLL)-free grid-forming (GFM) control is employed via the grid-side converter (GSC), and DC-link voltage control is realized through the machine-side converter (MSC), both of which boost the energy support for the integrated AC grid’s frequency stability. This control strategy combines the benefits of over-speeding and pitch control modes, facilitating smooth transitions between different modes based on real-time wind speed measurements. In addition, the practical challenges of MMCs, such as circulating currents and capacitor voltage imbalances, are addressed. Numerical simulations under varying wind speeds and loading conditions validate the enhanced frequency regulation capability of the proposed approach.
Rowan University: Ro... arrow_drop_down Rowan University: Rowan Digital WorksArticle . 2024License: CC BYFull-Text: https://rdw.rowan.edu/engineering_facpub/317Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051253&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Rowan University: Ro... arrow_drop_down Rowan University: Rowan Digital WorksArticle . 2024License: CC BYFull-Text: https://rdw.rowan.edu/engineering_facpub/317Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17051253&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Md Abu Helal;
Nathaniel Anderson; Nathaniel Anderson
Nathaniel Anderson in OpenAIRE
Yu Wei; Matthew Thompson;doi: 10.3390/en16031187
Based on current trends and policies aimed at decarbonizing energy systems, the conversion of biomass to bioenergy has the potential to grow rapidly, but such growth depends on the development of efficient, sustainable, and competitive biomass supply chains. As a result, the biomass supply chain has stimulated the interest of a diverse group of researchers across academia, government, and industry, and there is a need to synthesize and categorize the rapidly expanding literature in this field. We conducted a literature review using advanced bibliometric analysis and visualization of 1711 peer-reviewed articles published from January 1992 to August 2022 with the aim of promoting impactful research in both growing and neglected areas of investigation. The results show that there are potential research gaps and opportunities in six critical areas: globalization of supply chain research; incorporation of uncertainty, stochasticity, and risk into supply chain models; investigation of multi-feedstock supply systems; strengthening supply chain resilience; application of inventory control methods; and broader use of machine learning and artificial intelligence in this field. By providing a holistic examination of how biomass-to-bioenergy supply chain research has grown and evolved over this period, our results and subsequent framework and recommendations can aid researchers in developing future studies and can guide stakeholder strategies to identify, diagnose, and address modern challenges that face the bioenergy industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031187&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031187&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:MDPI AG Authors: Nojan Aliahmad;
Pias Kumar Biswas; Pias Kumar Biswas
Pias Kumar Biswas in OpenAIRE
Hamid Dalir; Mangilal Agarwal;Hamid Dalir
Hamid Dalir in OpenAIREdoi: 10.3390/en15020552
handle: 1805/31575
Vanadium pentoxide (V2O5)-anchored single-walled carbon nanotube (SWCNT) composites have been developed through a simple sol–gel process, followed by hydrothermal treatment. The resulting material is suitable for use in flexible ultra-high capacity electrode applications for lithium-ion batteries. The unique combination of V2O5 with 0.2 wt.% of SWCNT offers a highly conductive three-dimensional network. This ultimately alleviates the low lithium-ion intercalation seen in V2O5 itself and facilitates vanadium redox reactions. The integration of SWCNTs into the layered structure of V2O5 leads to a high specific capacity of 390 mAhg−1 at 0.1 C between 1.8 to 3.8 V, which is close to the theoretical capacity of V2O5 (443 mAhg−1). In recent research, most of the V2O5 with carbonaceous materials shows higher specific capacity but limited cyclability and poor rate capability. In this work, good cyclability with only 0.3% per cycle degradation during 200 cycles and enhanced rate capability of 178 mAhg−1 at 10 C have been achieved. The excellent electrochemical kinetics during lithiation/delithiation is attributed to the chemical interaction of SWCNTs entrapped between layers of the V2O5 nanostructured network. Proper dispersion of SWCNTs into the V2O5 structure, and its resulting effects, have been validated by SEM, TEM, XPS, XRD, and electrical resistivity measurements. This innovative hybrid material offers a new direction for the large-scale production of high-performance cathode materials for advanced flexible and structural battery applications.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/552/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020552&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/552/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020552&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | THyGAEC| THyGAAuthors:
Leicher, Jörg; Leicher, Jörg
Leicher, Jörg in OpenAIRE
Schaffert, Johannes; Cigarida, Hristina; Tali, Eren; +7 AuthorsSchaffert, Johannes
Schaffert, Johannes in OpenAIRE
Leicher, Jörg; Leicher, Jörg
Leicher, Jörg in OpenAIRE
Schaffert, Johannes; Cigarida, Hristina; Tali, Eren; Burmeister, Frank; Giese, Anne; Albus, Rolf; Görner, Klaus; Carpentier, Stéphane; Milin, Patrick; Schweitzer, Jean;Schaffert, Johannes
Schaffert, Johannes in OpenAIREdoi: 10.3390/en15030777
Hydrogen as a carbon-free fuel is commonly expected to play a major role in future energy supply, e.g., as an admixture gas in natural gas grids. Which impacts on residential and commercial gas appliances can be expected due to the significantly different physical and chemical properties of hydrogen-enriched natural gas? This paper analyses and discusses blends of hydrogen and natural gas from the perspective of combustion science. The admixture of hydrogen into natural gas changes the properties of the fuel gas. Depending on the combustion system, burner design and other boundary conditions, these changes may cause higher combustion temperatures and laminar combustion velocities, while changing flame positions and shapes are also to be expected. For appliances that are designed for natural gas, these effects may cause risk of flashback, reduced operational safety, material deterioration, higher nitrogen oxides emissions (NOx), and efficiency losses. Theoretical considerations and first measurements indicate that the effects of hydrogen admixture on combustion temperatures and the laminar combustion velocities are often largely mitigated by a shift towards higher air excess ratios in the absence of combustion control systems, but also that common combustion control technologies may be unable to react properly to the presence of hydrogen in the fuel.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030777&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/3/777/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030777&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
