- home
- Advanced Search
- Energy Research
- 6. Clean water
- US
- GB
- JP
- Applied Energy
- Energy Research
- 6. Clean water
- US
- GB
- JP
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Elsevier BV Weizheng Zhou; Erkki Hiltunen; Erkki Hiltunen; Zhaohua Li; Zhongming Wang; Liandong Zhu; Liandong Zhu; Qing Shu;Abstract Algae have been considered as a promising biodiesel feedstock. One of the major factors affecting large-scale algae technology application is poor wintering cultivation performance. In this study, an integrated approach is investigated combining freshwater microalgae Chlorella zofingiensis wintering cultivation in pilot-scale photobioreactors with artificial wastewater treatment. Mixotrophic culture with the addition of acetic acid (pH-regulation group) and autotrophic culture (control group) were designed, and the characteristics of algal growth, lipid and biodiesel production, and nitrogen and phosphate removal were examined. The results showed that, by using acetic acid three times per day to regulate pH at between 6.8 and 7.2, the total nitrogen (TN) and total phosphate (TP) removal could be increased from 45.2% to 73.5% and from 92.2% to 100%, respectively. Higher biomass productivity of 66.94 mg L−1 day−1 with specific growth rate of 0.260 day−1 was achieved in the pH-regulation group. The lipid content was much higher when using acetic acid to regulate pH, and the relative lipid productivity reached 37.48 mg L−1 day−1. The biodiesel yield in the pH-regulated group was 19.44% of dry weight, with 16–18 carbons as the most abundant composition for fatty acid methyl esters. The findings of the study prove that pH adjustment using acetic acid is efficient in cultivating C. zofingiensis in wastewater in winter for biodiesel production and nutrient reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 China (People's Republic of)Publisher:Elsevier BV Weizheng Zhou; Erkki Hiltunen; Erkki Hiltunen; Zhaohua Li; Zhongming Wang; Liandong Zhu; Liandong Zhu; Qing Shu;Abstract Algae have been considered as a promising biodiesel feedstock. One of the major factors affecting large-scale algae technology application is poor wintering cultivation performance. In this study, an integrated approach is investigated combining freshwater microalgae Chlorella zofingiensis wintering cultivation in pilot-scale photobioreactors with artificial wastewater treatment. Mixotrophic culture with the addition of acetic acid (pH-regulation group) and autotrophic culture (control group) were designed, and the characteristics of algal growth, lipid and biodiesel production, and nitrogen and phosphate removal were examined. The results showed that, by using acetic acid three times per day to regulate pH at between 6.8 and 7.2, the total nitrogen (TN) and total phosphate (TP) removal could be increased from 45.2% to 73.5% and from 92.2% to 100%, respectively. Higher biomass productivity of 66.94 mg L−1 day−1 with specific growth rate of 0.260 day−1 was achieved in the pH-regulation group. The lipid content was much higher when using acetic acid to regulate pH, and the relative lipid productivity reached 37.48 mg L−1 day−1. The biodiesel yield in the pH-regulated group was 19.44% of dry weight, with 16–18 carbons as the most abundant composition for fatty acid methyl esters. The findings of the study prove that pH adjustment using acetic acid is efficient in cultivating C. zofingiensis in wastewater in winter for biodiesel production and nutrient reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yaqi You;Amir Mohajeri;
Amir Mohajeri
Amir Mohajeri in OpenAIREAmin Mirkouei;
Amin Mirkouei
Amin Mirkouei in OpenAIREEthan Struhs;
Ethan Struhs
Ethan Struhs in OpenAIREAbstract Bioproducts from biomass feedstocks and organic wastes have shown great potential to address challenges across food-energy-water systems. However, bioproducts production is at an early, nascent stage that requires new inventions and cost-reducing approaches to meet market needs. Biochar, a byproduct of the pyrolysis process, derived from nutrient-rich biomass feedstocks (e.g., cattle manure and poultry litter) is one of these bioproducts that has numerous applications, such as improving soil fertility and crop productivity. This study investigates the market opportunity and sustainability benefits of converting manure to biochar on-site, using a portable refinery unit. Techno-economic and environmental impact assessments are conducted on a real case study in Twin Falls, Idaho, USA. The techno-economic analysis includes a stochastic optimization model to calculate the total cost of biochar production and distribution. The environmental study employs a life cycle assessment method to evaluate the global warming potential of manure-to-biochar production and distribution network. The total cost of biochar production from cattle manure near the feedlots is approximately $237 per metric ton, and total emission is 951 kg CO2 eq. per metric ton. The on-site operation and manure moisture content are two key parameters that can reduce biochar unit price and carbon footprint of manure management. It is concluded that converting cattle manure, using the presented strategy and process near the collection sites can address upstream and midstream sustainability challenges and stimulate the biochar industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Yaqi You;Amir Mohajeri;
Amir Mohajeri
Amir Mohajeri in OpenAIREAmin Mirkouei;
Amin Mirkouei
Amin Mirkouei in OpenAIREEthan Struhs;
Ethan Struhs
Ethan Struhs in OpenAIREAbstract Bioproducts from biomass feedstocks and organic wastes have shown great potential to address challenges across food-energy-water systems. However, bioproducts production is at an early, nascent stage that requires new inventions and cost-reducing approaches to meet market needs. Biochar, a byproduct of the pyrolysis process, derived from nutrient-rich biomass feedstocks (e.g., cattle manure and poultry litter) is one of these bioproducts that has numerous applications, such as improving soil fertility and crop productivity. This study investigates the market opportunity and sustainability benefits of converting manure to biochar on-site, using a portable refinery unit. Techno-economic and environmental impact assessments are conducted on a real case study in Twin Falls, Idaho, USA. The techno-economic analysis includes a stochastic optimization model to calculate the total cost of biochar production and distribution. The environmental study employs a life cycle assessment method to evaluate the global warming potential of manure-to-biochar production and distribution network. The total cost of biochar production from cattle manure near the feedlots is approximately $237 per metric ton, and total emission is 951 kg CO2 eq. per metric ton. The on-site operation and manure moisture content are two key parameters that can reduce biochar unit price and carbon footprint of manure management. It is concluded that converting cattle manure, using the presented strategy and process near the collection sites can address upstream and midstream sustainability challenges and stimulate the biochar industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115782&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Elsevier BV Authors: S.D. Probert; R. Mote; D. Nevrala;Abstract A coiled-pipe exchanger was employed to extract heat rapidly at relatively high temperatures from a 90-litre hot-water charged tank, the water being initially at a temperature of approximately 80°C. The free-convective movements of the water around the outside of the coiled pipe (immersed in the store) were due to buoyancy forces induced by colder water being forced through the heat-exchanger's pipe. For the heat-exchanger orientations tested, the maximum effectiveness, with respect to the quality of the heat extracted was achieved (i) by having the axis of the coiled heat-exchanger arranged horizontally with its inlet at the lowest level; and (ii) with the lower rate tested (=6·6 litre/min) of water being passed through the heat-exchanger's pipe, partly because this led to a lower rate of disruption of the stratification of the water within the store.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(91)90038-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(91)90038-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Elsevier BV Authors: S.D. Probert; R. Mote; D. Nevrala;Abstract A coiled-pipe exchanger was employed to extract heat rapidly at relatively high temperatures from a 90-litre hot-water charged tank, the water being initially at a temperature of approximately 80°C. The free-convective movements of the water around the outside of the coiled pipe (immersed in the store) were due to buoyancy forces induced by colder water being forced through the heat-exchanger's pipe. For the heat-exchanger orientations tested, the maximum effectiveness, with respect to the quality of the heat extracted was achieved (i) by having the axis of the coiled heat-exchanger arranged horizontally with its inlet at the lowest level; and (ii) with the lower rate tested (=6·6 litre/min) of water being passed through the heat-exchanger's pipe, partly because this led to a lower rate of disruption of the stratification of the water within the store.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(91)90038-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(91)90038-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Moncef Krarti; Mohammad Aldubyan;Abstract This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Moncef Krarti; Mohammad Aldubyan;Abstract This paper describes an analysis approach to assess water consumption attributed to electricity generation required to meet the demand for the entire Saudi residential building stock. In addition, the analysis aims at estimating the water consumption reduction due to cost-effective energy retrofit measures for the Saudi housing stock. The analysis estimated that the water consumed annually to generate electricity for the Saudi entire housing stock is 135 MCM representing almost 10% and 4% of the water used by the industrial sector. Moreover, it is found that both electricity generation need and associated water consumption can be reduced by 15.7% when lighting is retrofitted with low-energy fixtures and by 25.8% when high efficiency air conditioning systems are installed for all the existing Saudi housing stocks. For the housing stock located in the Central region with prevalent dry climates, replacing existing air conditioning by evaporative coolers can save 11.1 TWh/a (25.5%) in electricity consumption but increase the water consumption by 36.2 MCM/a (80.6%). A cost-benefit analysis of lighting retrofit is found to be highly cost-effective for both households and the government with payback periods of less than 1 year.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116767&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV The multi-effect distillation with thermal vapour compression (MED-TVC) desalination system is efficient to produce freshwater. The steam ejector performance is not fully understood as the phase transition has been ignored in many studies. The present work develops a two-phase condensing flow model to assess the steam ejector performance considering nonequilibrium condensation phenomena. The transition of the flow structure from an under-expanded flow to an over-expanded flow in the steam ejector is investigated in detail. We present that the maximum Mach number can reach 4.02 in the under-expanded flow, which is weakened to 2.88 in the over-expanded flow. The steam undergoes several expansion-compression processes in the steam ejector in the under-expanded flow, which induces the formation and evaporation of massive droplets. In the over-expanded flow, the steam is compressed and then expanded after leaving the primary nozzle and the condensation process is not observed in mixing and constant sections. The increasing suction chamber pressure significantly improves the entrainment ratio while leading to an increasing entropy loss coefficient. The entrainment ratio is improved from 0.25 for the under-expanded flow to 1.69 for the over-expanded flow, while the entropy loss increases from 0.081 for the under-expanded flow to 0.29 for the over-expanded flow. This indicates that the transition of the flow structure from an under-expanded flow to an over-expanded flow can entrain more steam from the last effect while causes more entropy losses in a steam ejector for the MED-TVC desalination system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV The multi-effect distillation with thermal vapour compression (MED-TVC) desalination system is efficient to produce freshwater. The steam ejector performance is not fully understood as the phase transition has been ignored in many studies. The present work develops a two-phase condensing flow model to assess the steam ejector performance considering nonequilibrium condensation phenomena. The transition of the flow structure from an under-expanded flow to an over-expanded flow in the steam ejector is investigated in detail. We present that the maximum Mach number can reach 4.02 in the under-expanded flow, which is weakened to 2.88 in the over-expanded flow. The steam undergoes several expansion-compression processes in the steam ejector in the under-expanded flow, which induces the formation and evaporation of massive droplets. In the over-expanded flow, the steam is compressed and then expanded after leaving the primary nozzle and the condensation process is not observed in mixing and constant sections. The increasing suction chamber pressure significantly improves the entrainment ratio while leading to an increasing entropy loss coefficient. The entrainment ratio is improved from 0.25 for the under-expanded flow to 1.69 for the over-expanded flow, while the entropy loss increases from 0.081 for the under-expanded flow to 0.29 for the over-expanded flow. This indicates that the transition of the flow structure from an under-expanded flow to an over-expanded flow can entrain more steam from the last effect while causes more entropy losses in a steam ejector for the MED-TVC desalination system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ChilePublisher:Elsevier BV Funded by:CO | DESALINATION DRIVEN BY SA..., NSF | Collaborative Research: F..., NSF | Collaborative Research: F...CO| DESALINATION DRIVEN BY SALT-GRADIENT SOLAR PONDS: IMPACT OF EVAPORATION SUPPRESSION ON ENERGY COLLECTION AND WATER PRODUCTION ,NSF| Collaborative Research: Facility Support: Center for Transformative Environmental Monitoring Programs: Fiber-Optic Distributed Sensing ,NSF| Collaborative Research: Facility Support: Transformation of Distributed Environmental SensingAuthors:Suárez Poch, Francisco Ignacio;
Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.;Suárez Poch, Francisco Ignacio
Suárez Poch, Francisco Ignacio in OpenAIREhandle: 10533/239344
Abstract Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ChilePublisher:Elsevier BV Funded by:CO | DESALINATION DRIVEN BY SA..., NSF | Collaborative Research: F..., NSF | Collaborative Research: F...CO| DESALINATION DRIVEN BY SALT-GRADIENT SOLAR PONDS: IMPACT OF EVAPORATION SUPPRESSION ON ENERGY COLLECTION AND WATER PRODUCTION ,NSF| Collaborative Research: Facility Support: Center for Transformative Environmental Monitoring Programs: Fiber-Optic Distributed Sensing ,NSF| Collaborative Research: Facility Support: Transformation of Distributed Environmental SensingAuthors:Suárez Poch, Francisco Ignacio;
Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.;Suárez Poch, Francisco Ignacio
Suárez Poch, Francisco Ignacio in OpenAIREhandle: 10533/239344
Abstract Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in the future.
LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 96 citations 96 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasArticle . 2020License: CC BY NC NDApplied EnergyArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)LAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDLAReferencia - Red Federada de Repositorios Institucionales de Publicaciones Científicas LatinoamericanasOther literature type . 2020License: CC BY NC NDPontificia Universidad Católica de Chile: Repositorio UCArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.08.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Devesh Chugh; Kyle R. Gluesenkamp;Ahmad Abu-Heiba;
Morteza Alipanah; +5 AuthorsAhmad Abu-Heiba
Ahmad Abu-Heiba in OpenAIREDevesh Chugh; Kyle R. Gluesenkamp;Ahmad Abu-Heiba;
Morteza Alipanah; Abdy Fazeli; Richard Rode;Ahmad Abu-Heiba
Ahmad Abu-Heiba in OpenAIREMichael Schmid;
Viral K. Patel;Michael Schmid
Michael Schmid in OpenAIRESaeed Moghaddam;
Saeed Moghaddam
Saeed Moghaddam in OpenAIREAbstract While the use of energy efficient absorption heat pumps has been typically limited to the high capacity commercial and industrial applications, the use of a semi-open absorption heat pump for water heating has been demonstrated to be an energy efficient alternative for residential scale applications. A semi-open absorption system uses ambient water vapor as the refrigerant in the absorber where its heat of phase change is transferred to the process water, cooling the solution in the absorber. The solution is pumped to the desorber, where by adding heat, the water vapor is released from the solution and condensed in the condenser. The heat of phase change of water vapor is transferred to process water again in the condenser. This cycle when implemented with a membrane-based absorber in a plate and frame form of heat exchanger using ionic liquids can overcome the challenges related to the system architecture of conventional absorption heat pumps like the lower efficiency at small scale, crystallization/corrosion issues with the desiccants and the high cost of hermetically sealed components. The cycle COP for such a system was previously demonstrated by Chugh et al. for high humidity conditions. In this experimental study, design improvements were made that expand the system’s applicability to more practical and standardized test conditions. With these improvements, the performance of the system was evaluated. The results presented in this study demonstrate the improved system’s viability as a heat pump water heater conforming to standard water heater test conditions. Performance was measured at a cycle thermal COP of 1.2 with a hot water delivery water temperature of 56 °C and ambient air at 19 °C and 49% RH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Devesh Chugh; Kyle R. Gluesenkamp;Ahmad Abu-Heiba;
Morteza Alipanah; +5 AuthorsAhmad Abu-Heiba
Ahmad Abu-Heiba in OpenAIREDevesh Chugh; Kyle R. Gluesenkamp;Ahmad Abu-Heiba;
Morteza Alipanah; Abdy Fazeli; Richard Rode;Ahmad Abu-Heiba
Ahmad Abu-Heiba in OpenAIREMichael Schmid;
Viral K. Patel;Michael Schmid
Michael Schmid in OpenAIRESaeed Moghaddam;
Saeed Moghaddam
Saeed Moghaddam in OpenAIREAbstract While the use of energy efficient absorption heat pumps has been typically limited to the high capacity commercial and industrial applications, the use of a semi-open absorption heat pump for water heating has been demonstrated to be an energy efficient alternative for residential scale applications. A semi-open absorption system uses ambient water vapor as the refrigerant in the absorber where its heat of phase change is transferred to the process water, cooling the solution in the absorber. The solution is pumped to the desorber, where by adding heat, the water vapor is released from the solution and condensed in the condenser. The heat of phase change of water vapor is transferred to process water again in the condenser. This cycle when implemented with a membrane-based absorber in a plate and frame form of heat exchanger using ionic liquids can overcome the challenges related to the system architecture of conventional absorption heat pumps like the lower efficiency at small scale, crystallization/corrosion issues with the desiccants and the high cost of hermetically sealed components. The cycle COP for such a system was previously demonstrated by Chugh et al. for high humidity conditions. In this experimental study, design improvements were made that expand the system’s applicability to more practical and standardized test conditions. With these improvements, the performance of the system was evaluated. The results presented in this study demonstrate the improved system’s viability as a heat pump water heater conforming to standard water heater test conditions. Performance was measured at a cycle thermal COP of 1.2 with a hot water delivery water temperature of 56 °C and ambient air at 19 °C and 49% RH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.01.251&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV To optimize methane production from bituminous coal through use of a well-studied microbial community derived from the same Illinois basin in USA, a total of 12 parameters were first evaluated by setting up 64 reactors following a 2-level factorial design. Among the 12 parameters, temperature, coal loading, particle size and ethanol were found to have statistically significant effects on methane content and yield from coal. Following screening, to identify optimal value for each significant factor, a Box-Behnken design necessitating 29 reactors was adopted. Optimal conditions provided by the Design of Expert software for the highest methane yield were: temperature, 32 °C; coal loading, 201.98 g/L; coal particle size, <73.99 μm; and ethanol at 300 mM. Under these optimum conditions, the predicted methane yield and content was 2957.4 ft3/ton (83.7 mm3/ton) and 74.2%, respectively. To confirm the predicted results, a verification experiment was conducted, where a methane yield of 2900 ft3/ton (82.1 mm3/ton) with a methane content of 70% was observed. Thus, models developed from this study can be used to predict methane content and yield from bituminous coal through biogasification ex situ.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV To optimize methane production from bituminous coal through use of a well-studied microbial community derived from the same Illinois basin in USA, a total of 12 parameters were first evaluated by setting up 64 reactors following a 2-level factorial design. Among the 12 parameters, temperature, coal loading, particle size and ethanol were found to have statistically significant effects on methane content and yield from coal. Following screening, to identify optimal value for each significant factor, a Box-Behnken design necessitating 29 reactors was adopted. Optimal conditions provided by the Design of Expert software for the highest methane yield were: temperature, 32 °C; coal loading, 201.98 g/L; coal particle size, <73.99 μm; and ethanol at 300 mM. Under these optimum conditions, the predicted methane yield and content was 2957.4 ft3/ton (83.7 mm3/ton) and 74.2%, respectively. To confirm the predicted results, a verification experiment was conducted, where a methane yield of 2900 ft3/ton (82.1 mm3/ton) with a methane content of 70% was observed. Thus, models developed from this study can be used to predict methane content and yield from bituminous coal through biogasification ex situ.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.08.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Eugene Orda;Basim Belgasim;
Irina Makhkamova; Khamid Mahkamov;Basim Belgasim
Basim Belgasim in OpenAIREAn innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the performance of the plant. The proposed novel system with greater fresh water production capacity has a simple design and is easy to manufacture using low cost materials and therefore can be mass deployed for small scale saline water pumping and desalination across different regions with the relatively high solar radiation and shortage in the drinking water supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Eugene Orda;Basim Belgasim;
Irina Makhkamova; Khamid Mahkamov;Basim Belgasim
Basim Belgasim in OpenAIREAn innovative small dynamic water desalination plant was developed and tested under laboratory conditions. The system is a combination of a heat pipe evacuated tube solar collector, conventional condenser and novel fluid piston converter. Saline water is boiled and turned into vapour in the manifold of the solar collector. A small fraction of the solar energy supplied to the plant is used to drive the fluid piston converter. Oscillations of the fluid piston periodically change the volume and pressure in the plant. For the duration of approximately half of the periodic cycle the pressure in the plant drops below the atmospheric level causing flash boiling of saline water in the manifold of the solar collector. Generated vapour is turned into fresh water in the condenser which is surrounded by a cooling jacket with saline water. The flash boiling effect improves the fresh water production capacity of the plant. Additionally, the fluid piston converter drives a pump which provides lifting of saline water from a well and pumps this through the cooling jacket of the condenser to a saline water storage tank. This tank replenishes saline water in the manifold of the solar collector. Experimental investigations demonstrated the saline water self-circulation capability of the plant and increase in the fresh water production compared to the static mode of operation. Experimental data was also used to calibrate the mathematical model of the plant. Comparison of theoretical and experimental information demonstrates that the model accurately predicts the performance of the plant. The proposed novel system with greater fresh water production capacity has a simple design and is easy to manufacture using low cost materials and therefore can be mass deployed for small scale saline water pumping and desalination across different regions with the relatively high solar radiation and shortage in the drinking water supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.07.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jadwiga R. Ziolkowska;Abstract The question of increasing biofuels production and the development of different biofuels production technologies has become controversial. On the one hand, production of corn-based biofuels creates a ‘food/feed vs. fuel’ tradeoff condition, along with subsequent uncertainties for both consumers and producers (farmers). On the other, advanced biofuels (from, e.g., switchgrass, miscanthus, algae), although acknowledged as environmentally friendly, are not available on a large commercial scale yet. In addition, the limited resource availability for the production of biofuels feedstocks and the question of a sustainable biofuels production are major issues impacting decision making. Most recently, climatic conditions and the 2011–2012 drought in the US have imposed new uncertainties that need to be considered in policy- making processes. By using a multi-objective optimization model, the paper presents an approach of modeling sustainable biofuels production from conventional and advanced biofuels feedstocks, under the condition of limited resources and uncertainty resulting from incomplete information or missing knowledge about the consequences of possible policy actions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jadwiga R. Ziolkowska;Abstract The question of increasing biofuels production and the development of different biofuels production technologies has become controversial. On the one hand, production of corn-based biofuels creates a ‘food/feed vs. fuel’ tradeoff condition, along with subsequent uncertainties for both consumers and producers (farmers). On the other, advanced biofuels (from, e.g., switchgrass, miscanthus, algae), although acknowledged as environmentally friendly, are not available on a large commercial scale yet. In addition, the limited resource availability for the production of biofuels feedstocks and the question of a sustainable biofuels production are major issues impacting decision making. Most recently, climatic conditions and the 2011–2012 drought in the US have imposed new uncertainties that need to be considered in policy- making processes. By using a multi-objective optimization model, the paper presents an approach of modeling sustainable biofuels production from conventional and advanced biofuels feedstocks, under the condition of limited resources and uncertainty resulting from incomplete information or missing knowledge about the consequences of possible policy actions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.09.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu