- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- Embargo
- US
- IN
- GB
- FR
- Energy Research
- Closed Access
- Open Source
- Embargo
- US
- IN
- GB
- FR
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Rachna Vaish; U.D. Dwivedi; Saurabh Tewari; S.M. Tripathi;Abstract Newer generation sources and loads are posing new challenges to the conventional power system protection schemes. Adaptive and intelligent protection methodology, based on advanced measurement techniques and intelligent fault diagnosis such as machine learning (ML), is found to be useful to meet these challenges. A large number of research works are reported on ML-based power system fault diagnosis. However, ML techniques are evolving at a very fast pace, and an inclusive, as well as state-of-the-art review on ML-based power system fault diagnosis, is not available in the literature. Given this need and growing trend towards ML, the study presented in this paper aims to provide a comprehensive review of ML-based power system fault diagnosis. At first, efforts have been made to enlist the issues present in conventional fault diagnosis which led to the popularity of ML techniques. Also, a baseline framework and workflow for ML-based fault diagnosis are presented. Next, various unsupervised and supervised learning techniques have been discussed separately which have been used by several researchers for fault diagnosis. The discussion throughout is supported with tabulated facts for fault detection, classification and localization works with techniques used, different simulation tools used, and their application system. The advantages and disadvantages of all the techniques of fault diagnosis have also been discussed which will help the readers in the selection of techniques for their research. A brief review of reinforcement learning and transfer learning is also given as they are gaining popularity in power system-related studies and have the potential to be used for fault diagnosis. Finally, the research trends, some key issues, and directions for future research have been highlighted.
Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Rachna Vaish; U.D. Dwivedi; Saurabh Tewari; S.M. Tripathi;Abstract Newer generation sources and loads are posing new challenges to the conventional power system protection schemes. Adaptive and intelligent protection methodology, based on advanced measurement techniques and intelligent fault diagnosis such as machine learning (ML), is found to be useful to meet these challenges. A large number of research works are reported on ML-based power system fault diagnosis. However, ML techniques are evolving at a very fast pace, and an inclusive, as well as state-of-the-art review on ML-based power system fault diagnosis, is not available in the literature. Given this need and growing trend towards ML, the study presented in this paper aims to provide a comprehensive review of ML-based power system fault diagnosis. At first, efforts have been made to enlist the issues present in conventional fault diagnosis which led to the popularity of ML techniques. Also, a baseline framework and workflow for ML-based fault diagnosis are presented. Next, various unsupervised and supervised learning techniques have been discussed separately which have been used by several researchers for fault diagnosis. The discussion throughout is supported with tabulated facts for fault detection, classification and localization works with techniques used, different simulation tools used, and their application system. The advantages and disadvantages of all the techniques of fault diagnosis have also been discussed which will help the readers in the selection of techniques for their research. A brief review of reinforcement learning and transfer learning is also given as they are gaining popularity in power system-related studies and have the potential to be used for fault diagnosis. Finally, the research trends, some key issues, and directions for future research have been highlighted.
Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:ASME International Chengcheng Luo; Yufeng Cao; Yonghui Liu; Sicun Zhong; Suhui Zhao; Zhongbo Liu; Yaxin Liu; Danzhu Zheng;doi: 10.1115/1.4055223
Abstract Wellbore pressure gradient in gas wells is significant in designing deliquification technologies and optimizing production. At present, no model has yet to be established specifically for gas wells at a wide gas flowrate range. When calculating pressure gradient in a specific gas field, engineers must evaluate these widely used models and get the best performance model at a certain range. To establish a more comprehensive model in horizontal gas wells, an experimental study was conducted to investigate the flow behavior of liquid-gas two-phase flow at different gas and liquid velocities and inclined angles in a 50 mm visual pipe. The evaluation of these widely used models against the experimental data shows that no model can predict liquid holdup at different gas velocity ranges, and huge deviations due to several reasons can be observed. After conducting a comprehensive analysis, a new liquid holdup correlation was proposed based on the Mukherjee–Brill model by correlating from the experimental results, which have parametric ranges closer to the production of gas wells. This new model adopts a new dimensionless gas velocity number to characterize flow similarities and better scale up pressure from the experiment to the gas wells. By validating against experimental data and field data, the results indicate that the new two-phase flow model has stable performance and can accurately predict pressure gradients at different ranges of pressure and gas/liquid velocities.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:ASME International Chengcheng Luo; Yufeng Cao; Yonghui Liu; Sicun Zhong; Suhui Zhao; Zhongbo Liu; Yaxin Liu; Danzhu Zheng;doi: 10.1115/1.4055223
Abstract Wellbore pressure gradient in gas wells is significant in designing deliquification technologies and optimizing production. At present, no model has yet to be established specifically for gas wells at a wide gas flowrate range. When calculating pressure gradient in a specific gas field, engineers must evaluate these widely used models and get the best performance model at a certain range. To establish a more comprehensive model in horizontal gas wells, an experimental study was conducted to investigate the flow behavior of liquid-gas two-phase flow at different gas and liquid velocities and inclined angles in a 50 mm visual pipe. The evaluation of these widely used models against the experimental data shows that no model can predict liquid holdup at different gas velocity ranges, and huge deviations due to several reasons can be observed. After conducting a comprehensive analysis, a new liquid holdup correlation was proposed based on the Mukherjee–Brill model by correlating from the experimental results, which have parametric ranges closer to the production of gas wells. This new model adopts a new dimensionless gas velocity number to characterize flow similarities and better scale up pressure from the experiment to the gas wells. By validating against experimental data and field data, the results indicate that the new two-phase flow model has stable performance and can accurately predict pressure gradients at different ranges of pressure and gas/liquid velocities.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:IEEE Airin Rahman; Xue Gao; Jian Xie; Inalvis Alvarez-Fernandez; Hamed Haggi; Wei Sun;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:IEEE Airin Rahman; Xue Gao; Jian Xie; Inalvis Alvarez-Fernandez; Hamed Haggi; Wei Sun;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:SAGE Publications Hengjie Guo; Roberto Torelli; Namho Kim; David L Reuss; Magnus Sjöberg;Accurate predictions of fuel spray behavior and mixture formation in simulations of direct-injection spark-ignition (DISI) engines are fundamental to ensure proper description of all subsequent processes including ignition, combustion, and emissions. In this work, the spray evolution in a single-cylinder optical DISI engine was studied experimentally and numerically with the goal of enabling predictive computational fluid dynamics (CFD) modeling of in-cylinder sprays. The authors explored a wide range of operating conditions characterized by several fuel injection temperatures and engine speeds, using a well-characterized nine-component gasoline surrogate known as PACE-20. The effect of flash boiling and intake crossflow on the spray is discussed, with a focus on evaluating the ability of the spray models to capture highly transient spray behavior. In the experiments, the fuel temperature was varied between 20°C and 80°C, allowing for non-flash- to flash-boiling transition to emerge with enhanced flashing intensity at the highest temperatures. Spray collapse resulted in vapor-rich regions, owing to the locally lower inertia of the fluid. Varying the engine speed from 650 to 1950 rpm promoted increasingly more turbulent in-cylinder crossflow which interacted with the spray during the injection event and resulted in enhanced spray dispersion. The CFD model was able to capture the spray morphology transition at different fuel temperatures and engine speeds adequately. It is shown that the spray breakup model could capture the transitional spray behavior induced by flash boiling atomization and intake flow via proper initialization of the spray cone angle and calibration of the spray models’ constants.
International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:SAGE Publications Hengjie Guo; Roberto Torelli; Namho Kim; David L Reuss; Magnus Sjöberg;Accurate predictions of fuel spray behavior and mixture formation in simulations of direct-injection spark-ignition (DISI) engines are fundamental to ensure proper description of all subsequent processes including ignition, combustion, and emissions. In this work, the spray evolution in a single-cylinder optical DISI engine was studied experimentally and numerically with the goal of enabling predictive computational fluid dynamics (CFD) modeling of in-cylinder sprays. The authors explored a wide range of operating conditions characterized by several fuel injection temperatures and engine speeds, using a well-characterized nine-component gasoline surrogate known as PACE-20. The effect of flash boiling and intake crossflow on the spray is discussed, with a focus on evaluating the ability of the spray models to capture highly transient spray behavior. In the experiments, the fuel temperature was varied between 20°C and 80°C, allowing for non-flash- to flash-boiling transition to emerge with enhanced flashing intensity at the highest temperatures. Spray collapse resulted in vapor-rich regions, owing to the locally lower inertia of the fluid. Varying the engine speed from 650 to 1950 rpm promoted increasingly more turbulent in-cylinder crossflow which interacted with the spray during the injection event and resulted in enhanced spray dispersion. The CFD model was able to capture the spray morphology transition at different fuel temperatures and engine speeds adequately. It is shown that the spray breakup model could capture the transitional spray behavior induced by flash boiling atomization and intake flow via proper initialization of the spray cone angle and calibration of the spray models’ constants.
International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Vladimir Bazjanac; Tobias Maile; Tobias Maile; Martin Fischer;Abstract Building energy performance is often inadequate given design goals. While different types of assessment methods exist, they either do not consider design goals and/or are not general enough to integrate new and innovative energy concepts. Furthermore, existing assessment methods focus mostly on the building and system level while ignoring more detailed data. With the availability and affordability of more detailed measured data, the increased number of measured data points requires a structure to organize these data. This paper presents the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured data and simulated data representing design goals. The EPCM is based on an interlinked building object hierarchy that structures the detailed performance data from a spatial and mechanical perspective. This research is developed and tested on multiple case studies that provide real-life context and more generality compared to single case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Vladimir Bazjanac; Tobias Maile; Tobias Maile; Martin Fischer;Abstract Building energy performance is often inadequate given design goals. While different types of assessment methods exist, they either do not consider design goals and/or are not general enough to integrate new and innovative energy concepts. Furthermore, existing assessment methods focus mostly on the building and system level while ignoring more detailed data. With the availability and affordability of more detailed measured data, the increased number of measured data points requires a structure to organize these data. This paper presents the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured data and simulated data representing design goals. The EPCM is based on an interlinked building object hierarchy that structures the detailed performance data from a spatial and mechanical perspective. This research is developed and tested on multiple case studies that provide real-life context and more generality compared to single case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1967Publisher:Springer Science and Business Media LLC Authors: E.A. Wolin; M. J. Wolin; R. S. Wolfe; Marvin P. Bryant;doi: 10.1007/bf00406313
pmid: 5602458
Two bacterial species were isolated from cultures of Methanobacillus omelianskii grown on media, containing ethanol as oxidizable substrate. One of these, the S organism, is a gram negative, motile, anaerobic rod which ferments ethanol with production of H2 and acetate but is inhibited by inclusion of 0.5 atm of H2 in the gas phase of the medium. The other organism is a gram variable, nonmotile, anaerobic rod which utilizes H2 but not ethanol for growth and methane formation. The results indicate that M. omelianskii maintained in ethanol media is actually a symbiotic association of the two species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu589 citations 589 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1967Publisher:Springer Science and Business Media LLC Authors: E.A. Wolin; M. J. Wolin; R. S. Wolfe; Marvin P. Bryant;doi: 10.1007/bf00406313
pmid: 5602458
Two bacterial species were isolated from cultures of Methanobacillus omelianskii grown on media, containing ethanol as oxidizable substrate. One of these, the S organism, is a gram negative, motile, anaerobic rod which ferments ethanol with production of H2 and acetate but is inhibited by inclusion of 0.5 atm of H2 in the gas phase of the medium. The other organism is a gram variable, nonmotile, anaerobic rod which utilizes H2 but not ethanol for growth and methane formation. The results indicate that M. omelianskii maintained in ethanol media is actually a symbiotic association of the two species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu589 citations 589 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 IndiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ragavan, K; Satish, L;The present authors reply to the comment by Popov et al. (IEEE Trans. Power Del., vol.22, no.2, p.1261, April 2007) on the original paper by Ragavan and Satish (IEEE Trans. Power Del., vol.20, no.2, pt.1, p.780-8, April 2005)
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 IndiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ragavan, K; Satish, L;The present authors reply to the comment by Popov et al. (IEEE Trans. Power Del., vol.22, no.2, p.1261, April 2007) on the original paper by Ragavan and Satish (IEEE Trans. Power Del., vol.20, no.2, pt.1, p.780-8, April 2005)
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yamini Sumathi; Cheng-Di Dong; Reeta Rani Singhania; Chiu-Wen Chen; Baskar Gurunathan; Anil Kumar Patel;pmid: 38679239
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yamini Sumathi; Cheng-Di Dong; Reeta Rani Singhania; Chiu-Wen Chen; Baskar Gurunathan; Anil Kumar Patel;pmid: 38679239
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Rachna Vaish; U.D. Dwivedi; Saurabh Tewari; S.M. Tripathi;Abstract Newer generation sources and loads are posing new challenges to the conventional power system protection schemes. Adaptive and intelligent protection methodology, based on advanced measurement techniques and intelligent fault diagnosis such as machine learning (ML), is found to be useful to meet these challenges. A large number of research works are reported on ML-based power system fault diagnosis. However, ML techniques are evolving at a very fast pace, and an inclusive, as well as state-of-the-art review on ML-based power system fault diagnosis, is not available in the literature. Given this need and growing trend towards ML, the study presented in this paper aims to provide a comprehensive review of ML-based power system fault diagnosis. At first, efforts have been made to enlist the issues present in conventional fault diagnosis which led to the popularity of ML techniques. Also, a baseline framework and workflow for ML-based fault diagnosis are presented. Next, various unsupervised and supervised learning techniques have been discussed separately which have been used by several researchers for fault diagnosis. The discussion throughout is supported with tabulated facts for fault detection, classification and localization works with techniques used, different simulation tools used, and their application system. The advantages and disadvantages of all the techniques of fault diagnosis have also been discussed which will help the readers in the selection of techniques for their research. A brief review of reinforcement learning and transfer learning is also given as they are gaining popularity in power system-related studies and have the potential to be used for fault diagnosis. Finally, the research trends, some key issues, and directions for future research have been highlighted.
Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Rachna Vaish; U.D. Dwivedi; Saurabh Tewari; S.M. Tripathi;Abstract Newer generation sources and loads are posing new challenges to the conventional power system protection schemes. Adaptive and intelligent protection methodology, based on advanced measurement techniques and intelligent fault diagnosis such as machine learning (ML), is found to be useful to meet these challenges. A large number of research works are reported on ML-based power system fault diagnosis. However, ML techniques are evolving at a very fast pace, and an inclusive, as well as state-of-the-art review on ML-based power system fault diagnosis, is not available in the literature. Given this need and growing trend towards ML, the study presented in this paper aims to provide a comprehensive review of ML-based power system fault diagnosis. At first, efforts have been made to enlist the issues present in conventional fault diagnosis which led to the popularity of ML techniques. Also, a baseline framework and workflow for ML-based fault diagnosis are presented. Next, various unsupervised and supervised learning techniques have been discussed separately which have been used by several researchers for fault diagnosis. The discussion throughout is supported with tabulated facts for fault detection, classification and localization works with techniques used, different simulation tools used, and their application system. The advantages and disadvantages of all the techniques of fault diagnosis have also been discussed which will help the readers in the selection of techniques for their research. A brief review of reinforcement learning and transfer learning is also given as they are gaining popularity in power system-related studies and have the potential to be used for fault diagnosis. Finally, the research trends, some key issues, and directions for future research have been highlighted.
Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Engineering Applicat... arrow_drop_down Engineering Applications of Artificial IntelligenceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.engappai.2021.104504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:ASME International Chengcheng Luo; Yufeng Cao; Yonghui Liu; Sicun Zhong; Suhui Zhao; Zhongbo Liu; Yaxin Liu; Danzhu Zheng;doi: 10.1115/1.4055223
Abstract Wellbore pressure gradient in gas wells is significant in designing deliquification technologies and optimizing production. At present, no model has yet to be established specifically for gas wells at a wide gas flowrate range. When calculating pressure gradient in a specific gas field, engineers must evaluate these widely used models and get the best performance model at a certain range. To establish a more comprehensive model in horizontal gas wells, an experimental study was conducted to investigate the flow behavior of liquid-gas two-phase flow at different gas and liquid velocities and inclined angles in a 50 mm visual pipe. The evaluation of these widely used models against the experimental data shows that no model can predict liquid holdup at different gas velocity ranges, and huge deviations due to several reasons can be observed. After conducting a comprehensive analysis, a new liquid holdup correlation was proposed based on the Mukherjee–Brill model by correlating from the experimental results, which have parametric ranges closer to the production of gas wells. This new model adopts a new dimensionless gas velocity number to characterize flow similarities and better scale up pressure from the experiment to the gas wells. By validating against experimental data and field data, the results indicate that the new two-phase flow model has stable performance and can accurately predict pressure gradients at different ranges of pressure and gas/liquid velocities.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:ASME International Chengcheng Luo; Yufeng Cao; Yonghui Liu; Sicun Zhong; Suhui Zhao; Zhongbo Liu; Yaxin Liu; Danzhu Zheng;doi: 10.1115/1.4055223
Abstract Wellbore pressure gradient in gas wells is significant in designing deliquification technologies and optimizing production. At present, no model has yet to be established specifically for gas wells at a wide gas flowrate range. When calculating pressure gradient in a specific gas field, engineers must evaluate these widely used models and get the best performance model at a certain range. To establish a more comprehensive model in horizontal gas wells, an experimental study was conducted to investigate the flow behavior of liquid-gas two-phase flow at different gas and liquid velocities and inclined angles in a 50 mm visual pipe. The evaluation of these widely used models against the experimental data shows that no model can predict liquid holdup at different gas velocity ranges, and huge deviations due to several reasons can be observed. After conducting a comprehensive analysis, a new liquid holdup correlation was proposed based on the Mukherjee–Brill model by correlating from the experimental results, which have parametric ranges closer to the production of gas wells. This new model adopts a new dimensionless gas velocity number to characterize flow similarities and better scale up pressure from the experiment to the gas wells. By validating against experimental data and field data, the results indicate that the new two-phase flow model has stable performance and can accurately predict pressure gradients at different ranges of pressure and gas/liquid velocities.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4055223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:IEEE Airin Rahman; Xue Gao; Jian Xie; Inalvis Alvarez-Fernandez; Hamed Haggi; Wei Sun;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:IEEE Airin Rahman; Xue Gao; Jian Xie; Inalvis Alvarez-Fernandez; Hamed Haggi; Wei Sun;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/pesgm4...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pesgm48719.2022.9917144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:SAGE Publications Hengjie Guo; Roberto Torelli; Namho Kim; David L Reuss; Magnus Sjöberg;Accurate predictions of fuel spray behavior and mixture formation in simulations of direct-injection spark-ignition (DISI) engines are fundamental to ensure proper description of all subsequent processes including ignition, combustion, and emissions. In this work, the spray evolution in a single-cylinder optical DISI engine was studied experimentally and numerically with the goal of enabling predictive computational fluid dynamics (CFD) modeling of in-cylinder sprays. The authors explored a wide range of operating conditions characterized by several fuel injection temperatures and engine speeds, using a well-characterized nine-component gasoline surrogate known as PACE-20. The effect of flash boiling and intake crossflow on the spray is discussed, with a focus on evaluating the ability of the spray models to capture highly transient spray behavior. In the experiments, the fuel temperature was varied between 20°C and 80°C, allowing for non-flash- to flash-boiling transition to emerge with enhanced flashing intensity at the highest temperatures. Spray collapse resulted in vapor-rich regions, owing to the locally lower inertia of the fluid. Varying the engine speed from 650 to 1950 rpm promoted increasingly more turbulent in-cylinder crossflow which interacted with the spray during the injection event and resulted in enhanced spray dispersion. The CFD model was able to capture the spray morphology transition at different fuel temperatures and engine speeds adequately. It is shown that the spray breakup model could capture the transitional spray behavior induced by flash boiling atomization and intake flow via proper initialization of the spray cone angle and calibration of the spray models’ constants.
International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:SAGE Publications Hengjie Guo; Roberto Torelli; Namho Kim; David L Reuss; Magnus Sjöberg;Accurate predictions of fuel spray behavior and mixture formation in simulations of direct-injection spark-ignition (DISI) engines are fundamental to ensure proper description of all subsequent processes including ignition, combustion, and emissions. In this work, the spray evolution in a single-cylinder optical DISI engine was studied experimentally and numerically with the goal of enabling predictive computational fluid dynamics (CFD) modeling of in-cylinder sprays. The authors explored a wide range of operating conditions characterized by several fuel injection temperatures and engine speeds, using a well-characterized nine-component gasoline surrogate known as PACE-20. The effect of flash boiling and intake crossflow on the spray is discussed, with a focus on evaluating the ability of the spray models to capture highly transient spray behavior. In the experiments, the fuel temperature was varied between 20°C and 80°C, allowing for non-flash- to flash-boiling transition to emerge with enhanced flashing intensity at the highest temperatures. Spray collapse resulted in vapor-rich regions, owing to the locally lower inertia of the fluid. Varying the engine speed from 650 to 1950 rpm promoted increasingly more turbulent in-cylinder crossflow which interacted with the spray during the injection event and resulted in enhanced spray dispersion. The CFD model was able to capture the spray morphology transition at different fuel temperatures and engine speeds adequately. It is shown that the spray breakup model could capture the transitional spray behavior induced by flash boiling atomization and intake flow via proper initialization of the spray cone angle and calibration of the spray models’ constants.
International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/14680874241231623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Vladimir Bazjanac; Tobias Maile; Tobias Maile; Martin Fischer;Abstract Building energy performance is often inadequate given design goals. While different types of assessment methods exist, they either do not consider design goals and/or are not general enough to integrate new and innovative energy concepts. Furthermore, existing assessment methods focus mostly on the building and system level while ignoring more detailed data. With the availability and affordability of more detailed measured data, the increased number of measured data points requires a structure to organize these data. This paper presents the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured data and simulated data representing design goals. The EPCM is based on an interlinked building object hierarchy that structures the detailed performance data from a spatial and mechanical perspective. This research is developed and tested on multiple case studies that provide real-life context and more generality compared to single case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Vladimir Bazjanac; Tobias Maile; Tobias Maile; Martin Fischer;Abstract Building energy performance is often inadequate given design goals. While different types of assessment methods exist, they either do not consider design goals and/or are not general enough to integrate new and innovative energy concepts. Furthermore, existing assessment methods focus mostly on the building and system level while ignoring more detailed data. With the availability and affordability of more detailed measured data, the increased number of measured data points requires a structure to organize these data. This paper presents the Energy Performance Comparison Methodology (EPCM), which enables the identification of performance problems based on a comparison of measured data and simulated data representing design goals. The EPCM is based on an interlinked building object hierarchy that structures the detailed performance data from a spatial and mechanical perspective. This research is developed and tested on multiple case studies that provide real-life context and more generality compared to single case studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2012.03.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1967Publisher:Springer Science and Business Media LLC Authors: E.A. Wolin; M. J. Wolin; R. S. Wolfe; Marvin P. Bryant;doi: 10.1007/bf00406313
pmid: 5602458
Two bacterial species were isolated from cultures of Methanobacillus omelianskii grown on media, containing ethanol as oxidizable substrate. One of these, the S organism, is a gram negative, motile, anaerobic rod which ferments ethanol with production of H2 and acetate but is inhibited by inclusion of 0.5 atm of H2 in the gas phase of the medium. The other organism is a gram variable, nonmotile, anaerobic rod which utilizes H2 but not ethanol for growth and methane formation. The results indicate that M. omelianskii maintained in ethanol media is actually a symbiotic association of the two species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu589 citations 589 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1967Publisher:Springer Science and Business Media LLC Authors: E.A. Wolin; M. J. Wolin; R. S. Wolfe; Marvin P. Bryant;doi: 10.1007/bf00406313
pmid: 5602458
Two bacterial species were isolated from cultures of Methanobacillus omelianskii grown on media, containing ethanol as oxidizable substrate. One of these, the S organism, is a gram negative, motile, anaerobic rod which ferments ethanol with production of H2 and acetate but is inhibited by inclusion of 0.5 atm of H2 in the gas phase of the medium. The other organism is a gram variable, nonmotile, anaerobic rod which utilizes H2 but not ethanol for growth and methane formation. The results indicate that M. omelianskii maintained in ethanol media is actually a symbiotic association of the two species.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu589 citations 589 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/bf00406313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 IndiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ragavan, K; Satish, L;The present authors reply to the comment by Popov et al. (IEEE Trans. Power Del., vol.22, no.2, p.1261, April 2007) on the original paper by Ragavan and Satish (IEEE Trans. Power Del., vol.20, no.2, pt.1, p.780-8, April 2005)
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 IndiaPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ragavan, K; Satish, L;The present authors reply to the comment by Popov et al. (IEEE Trans. Power Del., vol.22, no.2, p.1261, April 2007) on the original paper by Ragavan and Satish (IEEE Trans. Power Del., vol.20, no.2, pt.1, p.780-8, April 2005)
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 2007 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.2007.893940&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yamini Sumathi; Cheng-Di Dong; Reeta Rani Singhania; Chiu-Wen Chen; Baskar Gurunathan; Anil Kumar Patel;pmid: 38679239
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yamini Sumathi; Cheng-Di Dong; Reeta Rani Singhania; Chiu-Wen Chen; Baskar Gurunathan; Anil Kumar Patel;pmid: 38679239
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2024.130749&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu