- home
- Advanced Search
- Energy Research
- US
- NL
- DK
- ZENODO
- Energy Research
- US
- NL
- DK
- ZENODO
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 BelgiumPublisher:Center for Open Science Authors: Heeren, Alexandre; Mouguiama Daouda, Camille; Contreras Cuevas, Alba;The notion of climate anxiety has gained traction in the last years. Yet uncertainty remains regarding the variations of climate anxiety across demographic characteristics (e.g., gender, age) and its associations with adaptive (i.e., pro-environmental) behaviors. Moreover, the point-estimate proportion of people frequently experiencing climate anxiety has seldom been probed. In this study, we assessed climate anxiety (including its related functional impairments), along with demographic characteristics, climate change experience, and pro-environmental behaviors, in 2,080 French-speaking participants from eight African and European countries. 11.64% of the participants reported experiencing climate anxiety frequently, and 20.72% reported experiencing daily life functional consequences (e.g., impact on the ability to go to work or socialize). Women and younger people exhibited significantly higher levels of climate anxiety. There was no difference between participants from African and European countries, although the sample size of the former was limited, thus precluding any definite conclusion regarding potential geographic differences. Concerning adaptation, climate anxiety was associated with pro-environmental behaviors. However, this association was significantly weaker in people reporting frequent experiences of climate anxiety (i.e., eco-paralysis) than in those with lower levels. Although this observation needs to be confirmed in longitudinal and experimental research, our results suggest that climate anxiety can impede daily life functioning and adaptation to climate change in many people, thus deserving a careful audit by the scientific community and practitioners.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:GSC Online Press Funded by:NSF | Collaborative Research: H..., NSF | Collaborative Research: H..., NSF | Collaborative Research: H...NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial PartnershipMoslemi, Zahra; Clark, Logan; Kernal, Sarah; Rehome, Samantha; Sprengel, Scott; Tamizifar, Ahoora; Tuli, Shawna; Chokshi, Vish; Nomeli, Mo; Liang, Ella; Bidgoli, Moury; Lu, Jeff; Dasaur, Manish; Hodgett, Marty;California’s significant role as the second-largest consumer of energy in the United States underscores the importance of accurate energy consumption predictions. With a thriving industrial sector, a burgeoning population, and ambitious environmental goals, the state’s energy landscape is dynamic and complex. This paper presents a comprehensive analysis of California’s energy consumption trends and provides detailed forecasting models for different energy sources and sectors. The study leverages ARIMA and ARIMAX models, considering both historical consumption data and exogenous variables. We address the unique challenges posed by the COVID-19 pandemic and the limited data for 2022, highlighting the resilience of these models in the face of uncertainty. Our analysis reveals that while fossil fuels continue to dominate California’s energy landscape, renewable energy sources, particularly solar and biomass, are experiencing substantial growth. Hydroelectric power, while sensitive to precipitation, remains a significant contributor to renewable energy consumption. Furthermore, we anticipate ongoing efforts to reduce fossil fuel consumption. The forecasts for energy consumption by sector suggest some decline in the commercial and residential sectors, reflecting California’s recently declining population and the shift away from brick-and-mortar shops and offices to online websites and remote work. In contrast, the industrial and transportation sectors are expected to experience some growth until they return to more constant pre-COVID levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Conference object 2022Publisher:Zenodo Funded by:EC | UPWARDSEC| UPWARDSAuthors: Croissance, In Extenso Innovation;Newsletter from March 2022 - Have a look on the last news around the UPWARDS project.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6539052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6539052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2023Publisher:ETA-Florence Renewable Energies Capaccioli, Stefano; Delanaye, Michel; Rehman, Danish; Ridolfi, Teresa; Bjørn Aaen, Sara; Løkke, Soren; Leijenhorst, Evert; van de Beld, Bert; Korteweg, Hans; Tudoroiu, Alexandra; Baghernejead, Ali; De Paepe, Ward; Hermann, Ralph; Nonnen, T.; Füldner, Gerrit; Velte, Andreas; Ramaswamy, S.; Harboe-Minwegen, Siri;The main aim of the Horizon Europe Fit4Micro Project is to develop a microCHCP unit running on sustainable liquid biofuels. The application of this unit is foreseen at multi-family houses and at remote or off-grid locations. This technology will lead to very high electrical efficiencies (>40%) and a flexible heat/power ratio. Moreover, the usage of a truly advanced and RED II compliant biofuel will guarantee a high GHG emission reduction. This flexible hybrid energy system is based on a double-shaft micro gas turbine (mGT) combined with a novel humidification unit, and will be able to provide renewable heating, cooling and power production, mainly for domestic usage. The Fit4Micro solution contributes to make Europe the first enabled circular, climate-neutral and sustainable economy. Proceedings of the 31st European Biomass Conference and Exhibition, 5-8 June 2023, Bologna, Italy, pp. 514-516
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/31steubce2023-3cv.4.10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/31steubce2023-3cv.4.10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Article 2020Publisher:Zenodo Funded by:EC | HYPERIONEC| HYPERIONKalis, Antonis; Karppinen, Ari; Zeppos, John; Vagelis Plevris; Vamvatsikos, Dimitris; Stephanos Camarinopoulos; Mazzoli, Claudio; Montes, Enrique Hernández; Moussiopoulos, Nicolas; Nicolaou, Pantelis; Antonelli, Fabrizio; Yannakopoulos, Panagiotis; Fagà, Ettore;Presentation of the Conference Paper: HYPERION: A Decision Support System for Improved Resilience and sustainable Reconstruction of historic areas in the Adapt Northern Heritage Conference 202 at Edinburgh, Scotland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8338321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8338321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2025Publisher:Zenodo Nikolopoulos, Anna; Azetsu-Scott, Kumiko; Cooper, Lee W.; Frey, Karen E.; Goethel, Christina L.; Jung, Jinyoung; Lee, Craig M.; Nishino, Shigeto; Polyakov, Igor V.; Reigstad, Marit; Sundfjord, Arild; Whitmore, Laura M.; Yang, Eun Jin; Grebmeier, Jacqueline M.;The Arctic climate system is in great distress, warming faster than the rest of the world and transforming more rapidly than previously anticipated. Sustained and harmonized multidisciplinary observations at key locations are needed to fill knowledge gaps and evaluate the ongoing climate change impacts on the complex Arctic marine system. For more than a decade, the Distributed Biological Observatory (DBO) has functioned as a “detection array” for ecosystem changes and trends in the Pacific sector of the Arctic Ocean. This long-term collaborative initiative builds on active involvement of scientists conducting in situ observations within marine disciplines to systematically document how the arctic marine ecosystem is transforming with environmental change. The DBO concept is currently being expanded into other sectors of the Arctic, including Davis Strait and Baffin Bay, the Atlantic Arctic gateway area, and the East Siberian Sea. Through increased collaboration and joint practices, findings from these regional areas can leverage to pan-Arctic perspectives and improve our understanding of the entire Arctic Ocean. Common practices are now being developed, including key phenomena and relevant indicators to study. Also, we strive towards harmonized routines for sampling, analysis and data sharing to increase the comparability across both disciplines and regions, and to improve the usability of our in-situ observations also for the modelling and remote sensing scopes. An ambition is, moreover, to expand from today's predominantly open-sea coverage towards coastal regions, to the benefit of both local communities and researchers. The process of establishing a pan-Arctic DBO network is to a large part facilitated by the EU Horizon project Arctic PASSION (2022-2025). Here, we present the latest developments and shared priorities, as well as our vision of how to incorporate our efforts into other parallel processes aiming to strengthen the pan-Arctic observing system towards, during and beyond the upcoming IPY.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15545181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15545181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Haner, J. M.; Laughlin, T. D.; Taylor, C. W.;A new out-of-step relaying concept has been previously reported. The concept involves augmaenting apparent resistance (R) measurement with rate-of-change of apparent resistance (Rdot) computation. The new R-Rdot relay thus has more intelligence for control decisions. This follow-up paper presents the following new information: large scale simulation results, including use of relay outputs for discrete supplemental control action; additional details on design and testing of the microprocessor based relay; and experience during an extensive monitoring period at Malin Substation on the Pacific AC Intertie. The relay is now energized for initiating controlled separations at several locations within the Western North American Power System.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Power Engineering ReviewArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.1986.4307931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 47 citations 47 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 17 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Power Engineering ReviewArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.1986.4307931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Cold Spring Harbor Laboratory Funded by:NSF | RESEARCH-PGR: Phenotypic...NSF| RESEARCH-PGR: Phenotypic and Genomic Diversity of North American VitisAbraham Morales-Cruz; Jonas Aguirre-Liguori; Mélanie Massonnet; Andrea Minio; Mirella Zaccheo; Noe Cochetel; Andrew Walker; Summaira Riaz; Yongfeng Zhou; Dario Cantu; Brandon S. Gaut;AbstractXylella fastidiosais a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives, causing economically devastating damage. There is, however, little understanding of the genes that contribute to resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (V. vinifera) are not resistant to the bacterium. Here we studied a wild grapevine species,Vitis arizonica, that segregates for resistance toX. fastidiosa. Using genome-wide association, we identified candidate genes that mediate the host response toX. fastidiosainfection. We uncovered evidence that resistance requires genes from multiple genomic regions, based on data from breeding populations and from additionalVitisspecies. We also inferred that resistance evolved more than once in the wild, suggesting that wildVitisspecies may be a rich source for resistance alleles and mechanisms. Finally, resistance inV. arizonicawas climate dependent, because individuals from low (< 10°C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in these climates. Surprisingly, climate was nearly as effective a predictor of resistance phenotypes as some genetic markers. This work underscores that pathogen pressure is likely to increase with climate, but it also provides genetic insight and tools for breeding and transforming resistant crops.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2018Publisher:Zenodo Funded by:EC | SponGESEC| SponGESMarina Carreiro Silva; Joana R. Xavier; Ana Colaço; Nadine Le Bris; Lisa A. Levin;ABSTRACT Despite considerable technological advances in recent decades that have enabled the ecosystems of the deeper parts of the oceans to be discovered and explored, large knowledge gaps still exist on the biology and ecology of such ecosystems. This is largely due to challenges related to observation and experimentation in situ, and to maintaining deepwater species under ex situ experimental conditions. Deep-sea organisms have evolved life strategies and physiological adaptations (e.g. slow metabolism and growth rates, high longevity, and late maturity) that allow them to succeed in the cold and generally food-limited deep-sea environment but that may partially impair their ability to physiologically compensate for and adapt to changes in climate. Therefore, a deeper understanding of species’ biological and ecological traits, as well as their tolerance thresholds to single and cumulative climatic stressors (e.g. temperature and nutrition, pH and O2) is much needed. Most experiments to date have been conducted under short-term (i.e. acute) conditions, thereby hindering the mechanisms potentially involved in species resilience and acclimation. Studies addressing the impact of climate change on species gametogenesis, reproductive output, or larval development and physiology are also largely lacking. While efforts continue to build a knowledge base on the impacts over the physiological and ecological processes affecting individual species, it is also necessary to start to address the impacts that climate change will have on wider ecosystem functioning.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4298533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4298533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 BelgiumPublisher:Center for Open Science Authors: Heeren, Alexandre; Mouguiama Daouda, Camille; Contreras Cuevas, Alba;The notion of climate anxiety has gained traction in the last years. Yet uncertainty remains regarding the variations of climate anxiety across demographic characteristics (e.g., gender, age) and its associations with adaptive (i.e., pro-environmental) behaviors. Moreover, the point-estimate proportion of people frequently experiencing climate anxiety has seldom been probed. In this study, we assessed climate anxiety (including its related functional impairments), along with demographic characteristics, climate change experience, and pro-environmental behaviors, in 2,080 French-speaking participants from eight African and European countries. 11.64% of the participants reported experiencing climate anxiety frequently, and 20.72% reported experiencing daily life functional consequences (e.g., impact on the ability to go to work or socialize). Women and younger people exhibited significantly higher levels of climate anxiety. There was no difference between participants from African and European countries, although the sample size of the former was limited, thus precluding any definite conclusion regarding potential geographic differences. Concerning adaptation, climate anxiety was associated with pro-environmental behaviors. However, this association was significantly weaker in people reporting frequent experiences of climate anxiety (i.e., eco-paralysis) than in those with lower levels. Although this observation needs to be confirmed in longitudinal and experimental research, our results suggest that climate anxiety can impede daily life functioning and adaptation to climate change in many people, thus deserving a careful audit by the scientific community and practitioners.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:GSC Online Press Funded by:NSF | Collaborative Research: H..., NSF | Collaborative Research: H..., NSF | Collaborative Research: H...NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial PartnershipMoslemi, Zahra; Clark, Logan; Kernal, Sarah; Rehome, Samantha; Sprengel, Scott; Tamizifar, Ahoora; Tuli, Shawna; Chokshi, Vish; Nomeli, Mo; Liang, Ella; Bidgoli, Moury; Lu, Jeff; Dasaur, Manish; Hodgett, Marty;California’s significant role as the second-largest consumer of energy in the United States underscores the importance of accurate energy consumption predictions. With a thriving industrial sector, a burgeoning population, and ambitious environmental goals, the state’s energy landscape is dynamic and complex. This paper presents a comprehensive analysis of California’s energy consumption trends and provides detailed forecasting models for different energy sources and sectors. The study leverages ARIMA and ARIMAX models, considering both historical consumption data and exogenous variables. We address the unique challenges posed by the COVID-19 pandemic and the limited data for 2022, highlighting the resilience of these models in the face of uncertainty. Our analysis reveals that while fossil fuels continue to dominate California’s energy landscape, renewable energy sources, particularly solar and biomass, are experiencing substantial growth. Hydroelectric power, while sensitive to precipitation, remains a significant contributor to renewable energy consumption. Furthermore, we anticipate ongoing efforts to reduce fossil fuel consumption. The forecasts for energy consumption by sector suggest some decline in the commercial and residential sectors, reflecting California’s recently declining population and the shift away from brick-and-mortar shops and offices to online websites and remote work. In contrast, the industrial and transportation sectors are expected to experience some growth until they return to more constant pre-COVID levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Conference object 2022Publisher:Zenodo Funded by:EC | UPWARDSEC| UPWARDSAuthors: Croissance, In Extenso Innovation;Newsletter from March 2022 - Have a look on the last news around the UPWARDS project.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6539052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6539052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2023Publisher:ETA-Florence Renewable Energies Capaccioli, Stefano; Delanaye, Michel; Rehman, Danish; Ridolfi, Teresa; Bjørn Aaen, Sara; Løkke, Soren; Leijenhorst, Evert; van de Beld, Bert; Korteweg, Hans; Tudoroiu, Alexandra; Baghernejead, Ali; De Paepe, Ward; Hermann, Ralph; Nonnen, T.; Füldner, Gerrit; Velte, Andreas; Ramaswamy, S.; Harboe-Minwegen, Siri;The main aim of the Horizon Europe Fit4Micro Project is to develop a microCHCP unit running on sustainable liquid biofuels. The application of this unit is foreseen at multi-family houses and at remote or off-grid locations. This technology will lead to very high electrical efficiencies (>40%) and a flexible heat/power ratio. Moreover, the usage of a truly advanced and RED II compliant biofuel will guarantee a high GHG emission reduction. This flexible hybrid energy system is based on a double-shaft micro gas turbine (mGT) combined with a novel humidification unit, and will be able to provide renewable heating, cooling and power production, mainly for domestic usage. The Fit4Micro solution contributes to make Europe the first enabled circular, climate-neutral and sustainable economy. Proceedings of the 31st European Biomass Conference and Exhibition, 5-8 June 2023, Bologna, Italy, pp. 514-516
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/31steubce2023-3cv.4.10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/31steubce2023-3cv.4.10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type , Article 2020Publisher:Zenodo Funded by:EC | HYPERIONEC| HYPERIONKalis, Antonis; Karppinen, Ari; Zeppos, John; Vagelis Plevris; Vamvatsikos, Dimitris; Stephanos Camarinopoulos; Mazzoli, Claudio; Montes, Enrique Hernández; Moussiopoulos, Nicolas; Nicolaou, Pantelis; Antonelli, Fabrizio; Yannakopoulos, Panagiotis; Fagà, Ettore;Presentation of the Conference Paper: HYPERION: A Decision Support System for Improved Resilience and sustainable Reconstruction of historic areas in the Adapt Northern Heritage Conference 202 at Edinburgh, Scotland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8338321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8338321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2025Publisher:Zenodo Nikolopoulos, Anna; Azetsu-Scott, Kumiko; Cooper, Lee W.; Frey, Karen E.; Goethel, Christina L.; Jung, Jinyoung; Lee, Craig M.; Nishino, Shigeto; Polyakov, Igor V.; Reigstad, Marit; Sundfjord, Arild; Whitmore, Laura M.; Yang, Eun Jin; Grebmeier, Jacqueline M.;The Arctic climate system is in great distress, warming faster than the rest of the world and transforming more rapidly than previously anticipated. Sustained and harmonized multidisciplinary observations at key locations are needed to fill knowledge gaps and evaluate the ongoing climate change impacts on the complex Arctic marine system. For more than a decade, the Distributed Biological Observatory (DBO) has functioned as a “detection array” for ecosystem changes and trends in the Pacific sector of the Arctic Ocean. This long-term collaborative initiative builds on active involvement of scientists conducting in situ observations within marine disciplines to systematically document how the arctic marine ecosystem is transforming with environmental change. The DBO concept is currently being expanded into other sectors of the Arctic, including Davis Strait and Baffin Bay, the Atlantic Arctic gateway area, and the East Siberian Sea. Through increased collaboration and joint practices, findings from these regional areas can leverage to pan-Arctic perspectives and improve our understanding of the entire Arctic Ocean. Common practices are now being developed, including key phenomena and relevant indicators to study. Also, we strive towards harmonized routines for sampling, analysis and data sharing to increase the comparability across both disciplines and regions, and to improve the usability of our in-situ observations also for the modelling and remote sensing scopes. An ambition is, moreover, to expand from today's predominantly open-sea coverage towards coastal regions, to the benefit of both local communities and researchers. The process of establishing a pan-Arctic DBO network is to a large part facilitated by the EU Horizon project Arctic PASSION (2022-2025). Here, we present the latest developments and shared priorities, as well as our vision of how to incorporate our efforts into other parallel processes aiming to strengthen the pan-Arctic observing system towards, during and beyond the upcoming IPY.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15545181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15545181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Haner, J. M.; Laughlin, T. D.; Taylor, C. W.;A new out-of-step relaying concept has been previously reported. The concept involves augmaenting apparent resistance (R) measurement with rate-of-change of apparent resistance (Rdot) computation. The new R-Rdot relay thus has more intelligence for control decisions. This follow-up paper presents the following new information: large scale simulation results, including use of relay outputs for discrete supplemental control action; additional details on design and testing of the microprocessor based relay; and experience during an extensive monitoring period at Malin Substation on the Pacific AC Intertie. The relay is now energized for initiating controlled separations at several locations within the Western North American Power System.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Power Engineering ReviewArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.1986.4307931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 47 citations 47 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 17 Powered bymore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power DeliveryArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Power Engineering ReviewArticle . 1986 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrd.1986.4307931&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Cold Spring Harbor Laboratory Funded by:NSF | RESEARCH-PGR: Phenotypic...NSF| RESEARCH-PGR: Phenotypic and Genomic Diversity of North American VitisAbraham Morales-Cruz; Jonas Aguirre-Liguori; Mélanie Massonnet; Andrea Minio; Mirella Zaccheo; Noe Cochetel; Andrew Walker; Summaira Riaz; Yongfeng Zhou; Dario Cantu; Brandon S. Gaut;AbstractXylella fastidiosais a bacterium that infects crops like grapevines, coffee, almonds, citrus and olives, causing economically devastating damage. There is, however, little understanding of the genes that contribute to resistance, the genomic architecture of resistance, and the potential role of climate in shaping resistance, in part because major crops like grapevines (V. vinifera) are not resistant to the bacterium. Here we studied a wild grapevine species,Vitis arizonica, that segregates for resistance toX. fastidiosa. Using genome-wide association, we identified candidate genes that mediate the host response toX. fastidiosainfection. We uncovered evidence that resistance requires genes from multiple genomic regions, based on data from breeding populations and from additionalVitisspecies. We also inferred that resistance evolved more than once in the wild, suggesting that wildVitisspecies may be a rich source for resistance alleles and mechanisms. Finally, resistance inV. arizonicawas climate dependent, because individuals from low (< 10°C) temperature locations in the wettest quarter were typically susceptible to infection, likely reflecting a lack of pathogen pressure in these climates. Surprisingly, climate was nearly as effective a predictor of resistance phenotypes as some genetic markers. This work underscores that pathogen pressure is likely to increase with climate, but it also provides genetic insight and tools for breeding and transforming resistant crops.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 10visibility views 10 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/51j0r3pnData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.10.08.511428&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2018Publisher:Zenodo Funded by:EC | SponGESEC| SponGESMarina Carreiro Silva; Joana R. Xavier; Ana Colaço; Nadine Le Bris; Lisa A. Levin;ABSTRACT Despite considerable technological advances in recent decades that have enabled the ecosystems of the deeper parts of the oceans to be discovered and explored, large knowledge gaps still exist on the biology and ecology of such ecosystems. This is largely due to challenges related to observation and experimentation in situ, and to maintaining deepwater species under ex situ experimental conditions. Deep-sea organisms have evolved life strategies and physiological adaptations (e.g. slow metabolism and growth rates, high longevity, and late maturity) that allow them to succeed in the cold and generally food-limited deep-sea environment but that may partially impair their ability to physiologically compensate for and adapt to changes in climate. Therefore, a deeper understanding of species’ biological and ecological traits, as well as their tolerance thresholds to single and cumulative climatic stressors (e.g. temperature and nutrition, pH and O2) is much needed. Most experiments to date have been conducted under short-term (i.e. acute) conditions, thereby hindering the mechanisms potentially involved in species resilience and acclimation. Studies addressing the impact of climate change on species gametogenesis, reproductive output, or larval development and physiology are also largely lacking. While efforts continue to build a knowledge base on the impacts over the physiological and ecological processes affecting individual species, it is also necessary to start to address the impacts that climate change will have on wider ecosystem functioning.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4298533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Other literature type . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4298533&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu