- home
- Advanced Search
- Energy Research
- US
- Energy Research
- US
description Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ramiro González, Iñigo; Antolín Fernández, Elisa; Hwang, J.; Teran, A.; Martin, A.J.; García-Linares Fontes, Pablo; Millunchick, J.; Phillips, J.; Martí Vega, Antonio; Luque López, Antonio;In this work, we study type-II GaSb/GaAs quantum-dot intermediate band solar cells (IBSCs) by means of quantum efficiency (QE) measurements. We are able, for the first time, to measure an absolute QE which clearly reveals the three characteristic bandgaps of an IBSC; EG, EH, and EL, for which we found the values 1.52, 1.02, and 0.49 eV, respectively, at 9 K. Under monochromatic illumination, QE at the energies EH and EL is 10–4 and 10–8, respectively. These low values are explained by the lack of efficient mechanisms of completing the second sub-bandgap transition when only monochromatic illumination is used. The addition of a secondary light source (E = 1.32 eV) during the measurements produces an increase in the measured QE at EL of almost three orders of magnitude.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 SpainPublisher:IEEE Funded by:NSF | Materials World Network: ...NSF| Materials World Network: Intermediate Band Semiconductor Materials for High Efficiency Solar Energy ConversionPhilips, Jamie; Teran, A.; Chen, C.; Antolín Fernández, Elisa; Ramiro González, Iñigo; López Estrada, Esther; Hernández Martín, Estela; Artacho Huertas, Irene; Tablero Crespo, César; Martí Vega, Antonio; Luque López, Antonio;Energy conversion in solar cells incorporating ZnTeO base layers is presented. The ZnTeO base layers incorporate intermediate electronic states located approximately 0.4eV below the conduction band edge as a result of the substitution of O in Te sites in the ZnTe lattice. Cells with ZnTeO base layers demonstrate optical response at energies lower than the ZnTe bandedge, a feature that is absent in reference cells with ZnTe base layers. Quantum efficiency is significantly improved with the incorporation of ZnSe emitter/window layers and transition from growth on GaAs substrates to GaSb substrates with a near lattice match to ZnTe.
http://oa.upm.es/267... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6744459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert http://oa.upm.es/267... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6744459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Spain, FrancePublisher:Elsevier BV Funded by:NSF | International Research Fe...NSF| International Research Fellowship Program: Solar Energy ScienceMarron, Df; Canovas, E.; Levy, My; Marti, A.; Luque, A.; Afshar, M.; Albert, J.; Lehmann, S.; Abou-Ras, D.; Sadewasser, S.; Barreau, Nicolas;Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg=1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012 SpainPublisher:IEEE Funded by:NSF | Materials World Network: ...NSF| Materials World Network: Intermediate Band Semiconductor Materials for High Efficiency Solar Energy ConversionAntolín, Elisa; Chen, C.; Ramiro, Íñigo; Foley, J.; López, Esther; Artacho, Irene; Hwang, J.; Terán, A.; Hernández, Estela; Tablero, César; Martí Vega, Antonio; Phillips, J. D.; Luque López, Antonio;ZnTe doped with high concentrations of oxygen has been proposed in previous works as an intermediate band (IB) material for photovoltaic applications. The existence of extra optical transitions related to the presence of an IB has already been demonstrated in this material and it has been possible to measure the absorption coefficient of the transitions from the valence band (VB) to the IB. In this study, we present the first measurement of the absorption coefficient associated with transitions from the IB to the conduction band (CB) in ZnTeO. The samples used are 4-mum-thick ZnTe layers with or without O in a concentration ~10 19 cm -3, which have been grown on semiinsulating GaAs substrates by molecular beam epitaxy (MBE). The IB-CB absorption coefficient peaks for photon energies ~0.4 eV. It is extracted from reflectance and transmittance spectra measured using Fourier transform infrared (FTIR) spectroscopy. Under typical FTIR measurement conditions (low light intensity, broadband spectrum), the absorption coefficient in IB-to-CB transitions reaches 700 cm -1. This is much weaker than the one observed for VB-IB absorption. This result is consistent with the fact that the IB is expected to be nearly empty of electrons under equilibrium conditions in ZnTe(O).
http://oa.upm.es/207... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2012 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/pvsc-v...Conference object . 2012 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc-vol2.2012.6656727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 24 Powered bymore_vert http://oa.upm.es/207... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2012 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/pvsc-v...Conference object . 2012 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc-vol2.2012.6656727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Teran, A.; Chen, C.; López, E.; Linares, P.G.; Artacho Huertas, Irene; Martí Vega, Antonio; Luque López, Antonio; Phillips, J.D.;Limitations on the open-circuit voltage of p-ZnTe/n-ZnSe heterojunction solar cells are studied via current-voltage (I-V) measurements under solar concentration and at variable temperature. The open-circuit voltage reaches a maximum value of 1.95 V at 77 K and 199 suns. The open-circuit voltage shows good agreement with the calculated built-in potential of 2.00 V at 77 K. These results suggest that the open-circuit voltage is limited by heterojunction band offsets associated with the type-II heterojunction band lineup, rather than the bandgap energy of the ZnTe absorber material.
IEEE Journal of Phot... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2411057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2411057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Ramiro González, Iñigo; Antolín Fernández, Elisa; Hwang, J.; Teran, A.; Martin, A.J.; García-Linares Fontes, Pablo; Millunchick, J.; Phillips, J.; Martí Vega, Antonio; Luque López, Antonio;In this work, we study type-II GaSb/GaAs quantum-dot intermediate band solar cells (IBSCs) by means of quantum efficiency (QE) measurements. We are able, for the first time, to measure an absolute QE which clearly reveals the three characteristic bandgaps of an IBSC; EG, EH, and EL, for which we found the values 1.52, 1.02, and 0.49 eV, respectively, at 9 K. Under monochromatic illumination, QE at the energies EH and EL is 10–4 and 10–8, respectively. These low values are explained by the lack of efficient mechanisms of completing the second sub-bandgap transition when only monochromatic illumination is used. The addition of a secondary light source (E = 1.32 eV) during the measurements produces an increase in the measured QE at EL of almost three orders of magnitude.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticleLicense: publisher-specific, author manuscriptData sources: UnpayWallRecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2016.2637658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 SpainPublisher:IEEE Funded by:NSF | Materials World Network: ...NSF| Materials World Network: Intermediate Band Semiconductor Materials for High Efficiency Solar Energy ConversionPhilips, Jamie; Teran, A.; Chen, C.; Antolín Fernández, Elisa; Ramiro González, Iñigo; López Estrada, Esther; Hernández Martín, Estela; Artacho Huertas, Irene; Tablero Crespo, César; Martí Vega, Antonio; Luque López, Antonio;Energy conversion in solar cells incorporating ZnTeO base layers is presented. The ZnTeO base layers incorporate intermediate electronic states located approximately 0.4eV below the conduction band edge as a result of the substitution of O in Te sites in the ZnTe lattice. Cells with ZnTeO base layers demonstrate optical response at energies lower than the ZnTe bandedge, a feature that is absent in reference cells with ZnTe base layers. Quantum efficiency is significantly improved with the incorporation of ZnSe emitter/window layers and transition from growth on GaAs substrates to GaSb substrates with a near lattice match to ZnTe.
http://oa.upm.es/267... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6744459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert http://oa.upm.es/267... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAConference object . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6744459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Spain, FrancePublisher:Elsevier BV Funded by:NSF | International Research Fe...NSF| International Research Fellowship Program: Solar Energy ScienceMarron, Df; Canovas, E.; Levy, My; Marti, A.; Luque, A.; Afshar, M.; Albert, J.; Lehmann, S.; Abou-Ras, D.; Sadewasser, S.; Barreau, Nicolas;Nanostructured chalcopyrite compounds have recently been proposed as absorber materials for advanced photovoltaic devices. We have used photoreflectance (PR) to evaluate the impact of interdiffusion phenomena and the presence of native defects on the optoelectronic properties of such materials. Two model material systems have been analyzed: (i) thin layers of CuGaSe2 (Eg=1.7 eV) and CuInSe2 (1.0 eV) in a wide/low/wide bandgap stack that have been grown onto GaAs(0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD); and (ii) thin In2S3 samples (Eg=2.0 eV) containing small amounts of Cu that have been grown by co-evaporation (PVD) intending to form CuxInySz (Eg1.5 eV) nanoclusters into the In2S3 matrix. The results have been analyzed according to the third-derivative functional form (TDFF). The valence band structure of selenide reference samples could be resolved and uneven interdiffusion of Ga and In in the layer stack could be inferred from the shift of PR-signatures. Hints of electronic confinement associated to the transitions at the low-gap region have been found in the selenide layer stack. Regarding the sulphide system, In2S3 is characterized by the presence of native deep states, as revealed by PR. The defect structure of the compound undergoes changes when incorporating Cu and no conclusive result about the presence of ternary clusters of a distinct phase could be drawn. Interdiffusion phenomena and the presence of native defects in chalcopyrites and related compounds will determine their potential use in advanced photovoltaic devices based on nanostructures.
Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2010 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverSolar Energy Materials and Solar CellsArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversité de Nantes: HAL-UNIV-NANTESArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2010.06.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2012 SpainPublisher:IEEE Funded by:NSF | Materials World Network: ...NSF| Materials World Network: Intermediate Band Semiconductor Materials for High Efficiency Solar Energy ConversionAntolín, Elisa; Chen, C.; Ramiro, Íñigo; Foley, J.; López, Esther; Artacho, Irene; Hwang, J.; Terán, A.; Hernández, Estela; Tablero, César; Martí Vega, Antonio; Phillips, J. D.; Luque López, Antonio;ZnTe doped with high concentrations of oxygen has been proposed in previous works as an intermediate band (IB) material for photovoltaic applications. The existence of extra optical transitions related to the presence of an IB has already been demonstrated in this material and it has been possible to measure the absorption coefficient of the transitions from the valence band (VB) to the IB. In this study, we present the first measurement of the absorption coefficient associated with transitions from the IB to the conduction band (CB) in ZnTeO. The samples used are 4-mum-thick ZnTe layers with or without O in a concentration ~10 19 cm -3, which have been grown on semiinsulating GaAs substrates by molecular beam epitaxy (MBE). The IB-CB absorption coefficient peaks for photon energies ~0.4 eV. It is extracted from reflectance and transmittance spectra measured using Fourier transform infrared (FTIR) spectroscopy. Under typical FTIR measurement conditions (low light intensity, broadband spectrum), the absorption coefficient in IB-to-CB transitions reaches 700 cm -1. This is much weaker than the one observed for VB-IB absorption. This result is consistent with the fact that the IB is expected to be nearly empty of electrons under equilibrium conditions in ZnTe(O).
http://oa.upm.es/207... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2012 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/pvsc-v...Conference object . 2012 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc-vol2.2012.6656727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 24 Powered bymore_vert http://oa.upm.es/207... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAConference object . 2012 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAhttps://doi.org/10.1109/pvsc-v...Conference object . 2012 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc-vol2.2012.6656727&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Teran, A.; Chen, C.; López, E.; Linares, P.G.; Artacho Huertas, Irene; Martí Vega, Antonio; Luque López, Antonio; Phillips, J.D.;Limitations on the open-circuit voltage of p-ZnTe/n-ZnSe heterojunction solar cells are studied via current-voltage (I-V) measurements under solar concentration and at variable temperature. The open-circuit voltage reaches a maximum value of 1.95 V at 77 K and 199 suns. The open-circuit voltage shows good agreement with the calculated built-in potential of 2.00 V at 77 K. These results suggest that the open-circuit voltage is limited by heterojunction band offsets associated with the type-II heterojunction band lineup, rather than the bandgap energy of the ZnTe absorber material.
IEEE Journal of Phot... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2411057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2411057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu