- home
- Advanced Search
- Energy Research
- US
- Energy Research
- US
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United Kingdom, BelgiumPublisher:IOP Publishing Funded by:WT | Health and economic impac...WT| Health and economic impacts of urban heat islands and greenspaceAuthors:Jonas Van de Walle;
Jonas Van de Walle
Jonas Van de Walle in OpenAIREOscar Brousse;
L. Arnalsteen;Oscar Brousse
Oscar Brousse in OpenAIREChloe Brimicombe;
+12 AuthorsChloe Brimicombe
Chloe Brimicombe in OpenAIREJonas Van de Walle;
Jonas Van de Walle
Jonas Van de Walle in OpenAIREOscar Brousse;
L. Arnalsteen;Oscar Brousse
Oscar Brousse in OpenAIREChloe Brimicombe;
Chloe Brimicombe
Chloe Brimicombe in OpenAIREDenis K. Byarugaba;
Denis K. Byarugaba
Denis K. Byarugaba in OpenAIREMatthias Demuzere;
Matthias Demuzere
Matthias Demuzere in OpenAIREEddie Jjemba;
Eddie Jjemba
Eddie Jjemba in OpenAIREShuaib Lwasa;
Shuaib Lwasa
Shuaib Lwasa in OpenAIREHerbert Misiani;
Herbert Misiani
Herbert Misiani in OpenAIREGloria Nsangi Nakyagaba;
Felix Soetewey;Gloria Nsangi Nakyagaba
Gloria Nsangi Nakyagaba in OpenAIREHakimu Sseviiri;
Hakimu Sseviiri
Hakimu Sseviiri in OpenAIREWim Thiery;
Roxanne Vanhaeren;Wim Thiery
Wim Thiery in OpenAIREBenjamin F. Zaitchik;
Benjamin F. Zaitchik
Benjamin F. Zaitchik in OpenAIRENicole Van Lipzig;
Nicole Van Lipzig
Nicole Van Lipzig in OpenAIREAbstract Both climate change and rapid urbanization accelerate exposure to heat in the city of Kampala, Uganda. From a network of low-cost temperature and humidity sensors, operational in 2018–2019, we derive the daily mean, minimum and maximum Humidex in order to quantify and explain intra-urban heat stress variation. This temperature-humidity index is shown to be heterogeneously distributed over the city, with a daily mean intra-urban Humidex Index deviation of 1.2 ∘C on average. The largest difference between the coolest and the warmest station occurs between 16:00 and 17:00 local time. Averaged over the whole observation period, this daily maximum difference is 6.4 ∘C between the warmest and coolest stations, and reaches 14.5 ∘C on the most extreme day. This heat stress heterogeneity also translates to the occurrence of extreme heat, shown in other parts of the world to put local populations at risk of great discomfort or health danger. One station in a dense settlement reports a daily maximum Humidex Index of > 40 ∘C in 68% of the observation days, a level which was never reached at the nearby campus of the Makerere University, and only a few times at the city outskirts. Large intra-urban heat stress differences are explained by satellite earth observation products. Normalized Difference Vegetation Index has the highest (75%) power to predict the intra-urban variations in daily mean heat stress, but strong collinearity is found with other variables like impervious surface fraction and population density. Our results have implications for urban planning on the one hand, highlighting the importance of urban greening, and risk management on the other hand, recommending the use of a temperature-humidity index and accounting for large intra-urban heat stress variations and heat-prone districts in urban heat action plans for tropical humid cities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac47c3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac47c3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, BelgiumPublisher:Public Library of Science (PLoS) Publicly fundedFunded by:DFG | Integrated Climate System..., DFGDFG| Integrated Climate System Analysis and Prediction (CliSAP) ,DFGAuthors:Ariane Middel;
Ariane Middel
Ariane Middel in OpenAIREBenjamin Bechtel;
Benjamin Bechtel;Benjamin Bechtel
Benjamin Bechtel in OpenAIREMatthias Demuzere;
+2 AuthorsMatthias Demuzere
Matthias Demuzere in OpenAIREAriane Middel;
Ariane Middel
Ariane Middel in OpenAIREBenjamin Bechtel;
Benjamin Bechtel;Benjamin Bechtel
Benjamin Bechtel in OpenAIREMatthias Demuzere;
Matthias Demuzere; Gerald Mills;Matthias Demuzere
Matthias Demuzere in OpenAIRECities are major drivers of environmental change at all scales and are especially at risk from the ensuing effects, which include poor air quality, flooding and heat waves. Typically, these issues are studied on a city-by-city basis owing to the spatial complexity of built landscapes, local topography and emission patterns. However, to ensure knowledge sharing and to integrate local-scale processes with regional and global scale modelling initiatives, there is a pressing need for a world-wide database on cities that is suited for environmental studies. In this paper we present a European database that has a particular focus on characterising urbanised landscapes. It has been derived using tools and techniques developed as part of the World Urban Database and Access Portal Tools (WUDAPT) project, which has the goal of acquiring and disseminating climate-relevant information on cities worldwide. The European map is the first major step toward creating a global database on cities that can be integrated with existing topographic and natural land-cover databases to support modelling initiatives.
PLoS ONE arrow_drop_down Dokumentenrepositorium der RUB / RUB-RepositoryArticle . 2019License: CC BYData sources: Dokumentenrepositorium der RUB / RUB-RepositoryGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0214474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Dokumentenrepositorium der RUB / RUB-RepositoryArticle . 2019License: CC BYData sources: Dokumentenrepositorium der RUB / RUB-RepositoryGhent University Academic BibliographyArticle . 2019Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0214474&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, ItalyPublisher:Elsevier BV Authors: Hans Orru;Eduardo Olazabal;
Kati Orru; Kati Orru; +7 AuthorsEduardo Olazabal
Eduardo Olazabal in OpenAIREHans Orru;Eduardo Olazabal;
Kati Orru; Kati Orru;Eduardo Olazabal
Eduardo Olazabal in OpenAIREDavide Geneletti;
Ajay Gajanan Bhave;Davide Geneletti
Davide Geneletti in OpenAIRENeha Mittal;
Neha Mittal
Neha Mittal in OpenAIREMaija Faehnle;
Maija Faehnle
Maija Faehnle in OpenAIREOliver Heidrich;
Oliver Heidrich
Oliver Heidrich in OpenAIREEfren Feliu;
Efren Feliu
Efren Feliu in OpenAIREMatthias Demuzere;
Matthias Demuzere
Matthias Demuzere in OpenAIREIn order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas.
Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BY NCFull-Text: https://eprints.ncl.ac.uk/206538Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2014.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 695 citations 695 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Newcastle University... arrow_drop_down Newcastle University Library ePrints ServiceArticleLicense: CC BY NCFull-Text: https://eprints.ncl.ac.uk/206538Data sources: Bielefeld Academic Search Engine (BASE)Journal of Environmental ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2014.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 France, France, Netherlands, Switzerland, Australia, United Kingdom, United KingdomPublisher:Wiley Funded by:ARC | ARC Centres of Excellence..., UKRI | Ghosts from summers past:..., NHMRC | A vision of healthy urban... +7 projectsARC| ARC Centres of Excellences - Grant ID: CE170100023 ,UKRI| Ghosts from summers past: quantifying the role of vegetation legacy to climatic extremes ,NHMRC| A vision of healthy urban design for NCD prevention ,NWO| The windy city ,NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,DFG ,EC| urbisphere ,NSF| Meteorological Islands: How the Atmosphere Interacts with Large Individual Patches of Heterogeneity ,UKRI| Building Resilient Cities for Heat Waves ,UKRI| Building Resilient Cities for Heat WavesAuthors:Lipson, Mathew;
Lipson, Mathew
Lipson, Mathew in OpenAIREGrimmond, Sue;
Best, Martin;Grimmond, Sue
Grimmond, Sue in OpenAIREAbramowitz, Gab;
+41 AuthorsAbramowitz, Gab
Abramowitz, Gab in OpenAIRELipson, Mathew;
Lipson, Mathew
Lipson, Mathew in OpenAIREGrimmond, Sue;
Best, Martin;Grimmond, Sue
Grimmond, Sue in OpenAIREAbramowitz, Gab;
Coutts, Andrew; Tapper, Nigel;Abramowitz, Gab
Abramowitz, Gab in OpenAIREBaik, Jong‐jin;
Beyers, Meiring;Baik, Jong‐jin
Baik, Jong‐jin in OpenAIREBlunn, Lewis;
Boussetta, Souhail;Blunn, Lewis
Blunn, Lewis in OpenAIREBou-Zeid, Elie;
Bou-Zeid, Elie
Bou-Zeid, Elie in OpenAIREde Kauwe, Martin;
de Kauwe, Martin
de Kauwe, Martin in OpenAIREde Munck, Cécile;
de Munck, Cécile
de Munck, Cécile in OpenAIREDemuzere, Matthias;
Demuzere, Matthias
Demuzere, Matthias in OpenAIREFatichi, Simone;
Fatichi, Simone
Fatichi, Simone in OpenAIREFortuniak, Krzysztof;
Han, Beom‐soon;Fortuniak, Krzysztof
Fortuniak, Krzysztof in OpenAIREHendry, Margaret;
Hendry, Margaret
Hendry, Margaret in OpenAIREKikegawa, Yukihiro;
Kikegawa, Yukihiro
Kikegawa, Yukihiro in OpenAIREKondo, Hiroaki;
Lee, Doo‐il;Kondo, Hiroaki
Kondo, Hiroaki in OpenAIRELee, Sang‐hyun;
Lemonsu, Aude; Machado, Tiago;Lee, Sang‐hyun
Lee, Sang‐hyun in OpenAIREManoli, Gabriele;
Martilli, Alberto;Manoli, Gabriele
Manoli, Gabriele in OpenAIREMasson, Valéry;
Mcnorton, Joe;Masson, Valéry
Masson, Valéry in OpenAIREMeili, Naika;
Meili, Naika
Meili, Naika in OpenAIREMeyer, David;
Meyer, David
Meyer, David in OpenAIRENice, Kerry;
Nice, Kerry
Nice, Kerry in OpenAIREOleson, Keith;
Park, Seung‐bu;Oleson, Keith
Oleson, Keith in OpenAIRERoth, Michael;
Roth, Michael
Roth, Michael in OpenAIRESchoetter, Robert;
Schoetter, Robert
Schoetter, Robert in OpenAIRESimón-Moral, Andrés;
Simón-Moral, Andrés
Simón-Moral, Andrés in OpenAIRESteeneveld, Gert‐jan;
Steeneveld, Gert‐jan
Steeneveld, Gert‐jan in OpenAIRESun, Ting;
Takane, Yuya; Thatcher, Marcus;Sun, Ting
Sun, Ting in OpenAIRETsiringakis, Aristofanis;
Tsiringakis, Aristofanis
Tsiringakis, Aristofanis in OpenAIREVarentsov, Mikhail;
Varentsov, Mikhail
Varentsov, Mikhail in OpenAIREWang, Chenghao;
Wang, Chenghao
Wang, Chenghao in OpenAIREWang, Zhi‐hua;
Pitman, Andy;Wang, Zhi‐hua
Wang, Zhi‐hua in OpenAIREdoi: 10.1002/qj.4589
AbstractAccurately predicting weather and climate in cities is critical for safeguarding human health and strengthening urban resilience. Multimodel evaluations can lead to model improvements; however, there have been no major intercomparisons of urban‐focussed land surface models in over a decade. Here, in Phase 1 of the Urban‐PLUMBER project, we evaluate the ability of 30 land surface models to simulate surface energy fluxes critical to atmospheric meteorological and air quality simulations. We establish minimum and upper performance expectations for participating models using simple information‐limited models as benchmarks. Compared with the last major model intercomparison at the same site, we find broad improvement in the current cohort's predictions of short‐wave radiation, sensible and latent heat fluxes, but little or no improvement in long‐wave radiation and momentum fluxes. Models with a simple urban representation (e.g., ‘slab’ schemes) generally perform well, particularly when combined with sophisticated hydrological/vegetation models. Some mid‐complexity models (e.g., ‘canyon’ schemes) also perform well, indicating efforts to integrate vegetation and hydrology processes have paid dividends. The most complex models that resolve three‐dimensional interactions between buildings in general did not perform as well as other categories. However, these models also tended to have the simplest representations of hydrology and vegetation. Models without any urban representation (i.e., vegetation‐only land surface models) performed poorly for latent heat fluxes, and reasonably for other energy fluxes at this suburban site. Our analysis identified widespread human errors in initial submissions that substantially affected model performances. Although significant efforts are applied to correct these errors, we conclude that human factors are likely to influence results in this (or any) model intercomparison, particularly where participating scientists have varying experience and first languages. These initial results are for one suburban site, and future phases of Urban‐PLUMBER will evaluate models across 20 sites in different urban and regional climate zones.
Quarterly Journal of... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/11343/338314Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/qj.4589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Quarterly Journal of... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/11343/338314Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Quarterly Journal of the Royal Meteorological SocietyArticle . 2024 . Peer-reviewedData sources: European Union Open Data PortalInstitut national des sciences de l'Univers: HAL-INSUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/qj.4589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United Kingdom, NetherlandsPublisher:American Geophysical Union (AGU) Funded by:NSF | The Management and Operat..., EC | IntelliGen, DFG +2 projectsNSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR) ,EC| IntelliGen ,DFG ,UKRI| Building Resilient Cities for Heat Waves ,NWO| The windy cityAuthors:H. J. Jongen;
H. J. Jongen
H. J. Jongen in OpenAIREM. Lipson;
M. Lipson
M. Lipson in OpenAIREA. J. Teuling;
A. J. Teuling
A. J. Teuling in OpenAIRES. Grimmond;
+17 AuthorsS. Grimmond
S. Grimmond in OpenAIREH. J. Jongen;
H. J. Jongen
H. J. Jongen in OpenAIREM. Lipson;
M. Lipson
M. Lipson in OpenAIREA. J. Teuling;
A. J. Teuling
A. J. Teuling in OpenAIRES. Grimmond;
S. Grimmond
S. Grimmond in OpenAIREJ.‐J. Baik;
J.‐J. Baik
J.‐J. Baik in OpenAIREM. Best;
M. Best
M. Best in OpenAIREM. Demuzere;
M. Demuzere
M. Demuzere in OpenAIREK. Fortuniak;
K. Fortuniak
K. Fortuniak in OpenAIREY. Huang;
Y. Huang
Y. Huang in OpenAIREM. G. De Kauwe;
M. G. De Kauwe
M. G. De Kauwe in OpenAIRER. Li;
R. Li
R. Li in OpenAIREJ. McNorton;
J. McNorton
J. McNorton in OpenAIREN. Meili;
N. Meili
N. Meili in OpenAIREK. Oleson;
K. Oleson
K. Oleson in OpenAIRES.‐B. Park;
S.‐B. Park
S.‐B. Park in OpenAIRET. Sun;
A. Tsiringakis;
M. Varentsov;A. Tsiringakis
A. Tsiringakis in OpenAIREC. Wang;
C. Wang
C. Wang in OpenAIREZ.‐H. Wang;
Z.‐H. Wang
Z.‐H. Wang in OpenAIREG. J. Steeneveld;
G. J. Steeneveld
G. J. Steeneveld in OpenAIREAbstractUrban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban‐PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model‐site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.22541/essoa...Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ms004231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.22541/essoa...Article . 2024 . Peer-reviewedLicense: CC BY NCData sources: CrossrefWageningen Staff PublicationsArticle . 2024License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2024ms004231&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu