Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
32,269 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 3. Good health
  • 1. No poverty
  • US

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Karen Spivak; Zalman Amit; Carlos M.G. Aragon;

    The role of peripherally and centrally acting acetaldehyde in ethanol‐induced conditioned taste aversion (CTA) was investigated using various enzyme manipulations. Cyanamide, an aldehyde dehydrogenase inhibitor (ALDH) elevates blood acetaldehyde levels in the presence of ethanol. Concurrent administration with 4‐methylpyrazole (4MP), an alcohol dehydrogenase inhibitor, prevents peripheral accumulation of acetaldehyde by cyanamide. Under both treatment conditions brain and liver ALDH activity is inhibited. Water‐deprived rats were pretreated 4 hr prior to fluid presentation with intraperitoneal injections of saline (S+S), 4‐methylpyrazole (4MP+S), cyanamide (S+C), or 4‐methylpyrazole + cyanamide (4MP+C). Subsequently, animals were presented with a novel saccharin solution followed immediately by intraperitoneal injection of one of three doses of ethanol (0.4, 0.8, or 1.2 g/kg) or saline vehicle on four occasions. Results suggested that animals pretreated with cyanamide (groups S+C and 4MP+C) drank significantly less saccharin after conditioning with a subthreshold dose of ethanol (0.4 g/kg) in comparison to groups S+S and 4MP+S. Moreover, at the conditioning dose of 1.2 g/kg, cyanamide‐treated animals demonstrated an attenuation of CTA compared to the other two groups. These effects cannot be attributed to elevated blood acetaldehyde levels since pretreatment with 4MP+C prevented peripheral acetaldehyde accumulation. A characteristic common to both cyanamide‐treated groups was the inhibition of brain ALDH. It is therefore suggested that brain ALDH may play a role in the mediation of ethanol‐induced CTAs. It is conceivable that ALDH plays this role by regulating the levels of acetaldehyde in brain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1987 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1987 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: H W Sampson; Gallager S; Harry A. Hogan; Chondra W; +1 Authors

    Background: Chronic alcohol consumption has been demonstrated to be deleterious to bone health. However, binge drinking is the prevalent form of drinking in young people, which was the impetus for the present study to determine the effect of week‐end and week‐long binge drinking on bone health in a young actively growing animal model. Methods: Four‐week‐old, female, Sprague‐Dawley rats were given the amount of 5% alcohol by gavage to be equivalent to a 63 kg woman drinking six beers a day for either 2 or 5 consecutive days per week. Results: There were no changes in the 5‐day binge animals, but the 2‐day binge animals were hypocalcemia Similarly, 2‐day binge animals had slightly increased bone chemistry and histomorphometric values for both tibia and femur, but only femur length, dry weight, and ash weight as well as femur density, presented either as g/ml or ash weight per unit volume, were increased by a statistically significant level. Cross‐section periosteal Mineral Apposition Rate (MAR) was significantly decreased in the 2‐day alcohol fed animals. Conclusions: Actively growing rats given 5% alcohol by gavage for 2 days per week have an increased bone length, bone weight, and bone density. The interpretation of these results must be viewed with great caution because studies of chronic alcohol consumption, and many studies of acute drinking, clearly indicate deleterious effects of alcohol on bone health. Those fed alcohol for 5 days per week showed no change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1999 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1999 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shawn Litster; Reyhan Taspinar; Emin Caglan Kumbur;

    Abstract In this study, a multi-phase, two-dimensional model that integrates the bipolar plate (BP) and gas diffusion layer (GDL) interfacial morphology was developed to understand the effects of this interface on mass, charge and heat transport and performance of polymer electrolyte fuel cells (PEFCs). Two different case studies were performed. The first case assumes a perfect contact interface between the BP and GDL, whereas in the second case, the BP|GDL interfacial layer was incorporated as a separate domain based on the measured BP|GDL morphology. In the BP|GDL interface case, the interfacial voids were assumed to be filled with liquid water to investigate the role of the interfacial voids. For both cases, the effects of different current densities on the in-plane temperature, saturation, and oxygen concentration distribution in the GDL were investigated. Simulations indicate that the Ohmic and concentration losses are increased due to the inclusion of the realistic BP|GDL interface. The electrical contact resistance contribution of the BP|GDL interface was predicted to be 3.8 mΩcm 2 . The saturation in the GDL was found to be higher for the BP|GDL interface case, which results in higher concentration losses. The temperature was predicted to be slightly higher for the BP|GDL interface case, which could be attributed to the higher thermal contact resistance due to the fewer contact regions at the interface.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kevin P. Gallagher; Yanning Chen; Junda Jin; Rohini Kamal; +1 Authors

    Abstract This paper provides the first estimates of China's global developmental finance institutions in general and China's policy bank lending to foreign governments for energy in particular. According to the China Global Energy Finance database, between 2000 and 2017, China Development Bank (CDB) and China Export-Import Bank (CHEXIM) provided $225.75 billion in overseas energy development finance. We find that: China's ‘policy banks’ and funds have doubled the availability of global development finance –and hold more assets than the major Western-backed MDBs operating in developing countries. With the onset of a new family of funds and multilateral development banks co-financed by China, China is poised to be the largest development lender in the world as Western-backed MDBs appear stagnated in their ability to increase their capital bases. China's global energy portfolio is heavily exposed to country, macroeconomic, climate, and social risks, however. To mitigate such risks and meet the broader sustainable development challenge for the 21st Century, China's development finance will need to shift the composition of its global energy lending in a significant manner.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard L. Bell; Lawrence Lumeng; Zachary A. Rodd; Ting-Kai Li; +5 Authors

    Background:The ventral tegmental area (VTA) is involved in regulating ethanol drinking, and the posterior VTA seems to be a neuroanatomical substrate that mediates the reinforcing effects of ethanol in ethanol‐naïve Wistar and ethanol‐naïve alcohol‐preferring (P) rats. The objective of this study was to test the hypothesis that chronic ethanol drinking increases the sensitivity of the posterior VTA to the reinforcing effects of ethanol.Methods:Two groups of female P rats (one given water as its sole source of fluid and the other given 24‐hr free‐choice access to 15% ethanol and water for at least 8 weeks) were stereotaxically implanted with guide cannulae aimed at the posterior VTA. One week after surgery, rats were placed in standard two‐lever (active and inactive) operant chambers and connected to the microinfusion system. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol. The ethanol‐naïve and chronic ethanol‐drinking groups were assigned to subgroups to receive artificial CSF or 25, 50, 75, or 125 mg/dl of ethanol (n= 6–9/dose/group) to self‐infuse (FR1 schedule) during the 4‐hr sessions given every other day.Results:Compared with the infusions of artificial CSF, the control group reliably (p < 0.05) self‐infused 75 and 125 mg/dl of ethanol but not the lower concentrations. The ethanol‐drinking group had significantly (p < 0.05) higher self‐infusions of 50, 75, and 125 mg/dl of ethanol than artificial CSF during the four acquisition sessions; the number of infusions of all three doses was higher in the ethanol‐drinking group than in the ethanol‐naive group. Both groups decreased responding on the active lever when artificial CSF was substituted for ethanol, and both groups demonstrated robust reinstatement of responding on the active lever when ethanol was restored.Conclusions:Chronic ethanol drinking by P rats increased the sensitivity of the posterior VTA to the reinforcing effects of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Katherine M, Keyes;

    Alcohol use, binge drinking, and alcohol use disorders have been increasing among older adults in the US population, including adults over 50 as well as adults over 65. Increases in consumption are sharper among women, and among those who use additional substances such as cannabis, and those who are relatively healthy in older adulthood (i.e. those without multimorbidites). This commentary describes these trends as well as provides hypotheses, and the data underlying them, for both supply-side (alcohol marketing and messaging) and demand-side (healthier aging, increased financial stress) potential drivers of these increases. The need for additional resources and focus on older adult drinking is increasingly urgent, as alcohol-attributable deaths escalate among older adults in the United States.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://pubmed.ncbi.nlm.nih.go...
    Other literature type . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://pubmed.ncbi.nlm.nih.go...
      Other literature type . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rujian Fu; Song-Yul Choe; Jeffrey W. Fergus; Victor Agubra;

    Abstract When a lithium ion polymer battery (LiPB) is being cycled, one major cause for degradations is the irreversible side reactions between ions and solvent of electrolyte taking place at the surface of anode particles. SEM analysis of cycled battery cells has revealed that the deposits from the side reactions are dispersed not only on particles, but also between the composite anode and the separator. Thus, the solid electrolyte interface (SEI) becomes thicker and extra deposit layers are formed between composite anode and separator. Also, XPS analysis showed that the deposits are composed of Li 2 CO 3 , which is ionic conductive and electronic nonconductive. Based on the mechanisms and findings, we identified four degradation parameters, including volume fraction of accessible active anode, SEI resistance, resistance of deposit layer and diffusion coefficient of electrolyte, to describe capacity and power fade caused by the side reactions. These degradation parameters have been incorporated into an electrochemical thermal model that has been previously developed. The terminal voltage and capacity of the integrated model are compared with experimental data obtained for up to 300 cycles. Finally, the resistance of the deposit layer calculated by the model is validated against the thickness of the deposit layer measured by SEM.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    104
    citations104
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Donald T. Downing; Thomas L. Ray; Candia D. Payne;

    Sphingosine is known to have potent biological activity, including pronounced anti-microbial action in vitro against Candida albicans and some bacteria. Several sphingosine bases are present in stratum corneum at concentrations several orders of magnitude above those in other tissues. Sphingosine forms an undissociated salt with organic sulfates, however, so that the free sphingosine in the epidermis may be inactivated by the cholesterol sulfate known to be present. To investigate this hypothesis, C. albicans was grown in cultures with graded concentrations of sphingosine added in ethanol. In 1% ethanol, 0.1-100 microgram/ml sphingosine completely prevented growth of the organism for 12 h. All cultures eventually entered log-phase growth and reached limiting density at a rate inversely proportional to sphingosine concentration. When sphingosine was added, together with an equimolar amount of cholesterol sulfate, there was no delay in the onset of growth of the yeast and the rate of growth and final density were similar to control cultures. These results demonstrate that natural ratios of cholesterol sulfate neutralize the anti-microbial activity of sphingosine in vitro. In the epidermis, endogenous cholesterol sulfate is hydrolyzed by sterol sulfatase at the skin surface, where the released sphingosine may resist microbial colonization of the stratum corneum. This mechanism for liberating anti-microbial sphingosine base only at the skin surface may protect the viable epidermis against known cytotoxic effects of free sphingosine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Investigative Dermatology
    Article
    License: Elsevier Non-Commercial
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Investigative Dermatology
    Article . 1996
    License: Elsevier Non-Commercial
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Investigative Dermatology
    Article . 1996 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Investigative Dermatology
      Article
      License: Elsevier Non-Commercial
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Investigative Dermatology
      Article . 1996
      License: Elsevier Non-Commercial
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Investigative Dermatology
      Article . 1996 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nathan Fiala;

    Abstract The ecological footprint is a measure of the resources necessary to produce the goods that an individual or population consumes. It is also used as a measure of sustainability, though evidence suggests that it falls short. The assumptions behind footprint calculations have been extensively criticized; I present here further evidence that it fails to satisfy simple economic principles because the basic assumptions are contradicted by both theory and historical data. Specifically, I argue that the footprint arbitrarily assumes both zero greenhouse gas emissions, which may not be ex ante optimal, and national boundaries, which makes extrapolating from the average ecological footprint problematic. The footprint also cannot take into account intensive production, and so comparisons to biocapacity are erroneous. Using only the assumptions of the footprint then, one could argue that the Earth can sustain greatly increased production, though there are important limitations that the footprint cannot address, such as land degradation. Finally, the lack of correlation between land degradation and the ecological footprint obscures the effects of a larger sustainability problem. Better measures of sustainability would address these issues directly.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    227
    citations227
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hella Gergely; Hella Gergely; Jerzy Stachura; Andrzej S. Tarnawski; +3 Authors

    The abilities of antacid (Mylanta II), sucralfate, cimetidine, and ranitidine to protect the gastric mucosa against ethanol-induced necrosis were compared in a standardized, experimental rat model. Fasted rats received pretreatment with either saline, Mylanta II, 500 mg/kg of sucralfate, 50 mg/kg of cimetidine, or 50 mg/kg of ranitidine. This was followed one hour later by intragastric administration of 2 ml of 100 percent ethanol. Gastric mucosal injury was assessed four hours after administration of ethanol by quantitation of gross mucosal necrosis, assessment of mucosal histology, and determination of intragastric blood and protein concentrations. Pretreatment with Mylanta II or sucralfate significantly reduced ethanol-induced gastric mucosal necrosis. The protective effect of sucralfate was six to 10 times greater than that of Mylanta II. H2-receptor antagonists increased ethanol-induced gastric mucosal necrosis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The American Journal...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The American Journal of Medicine
    Article . 1985 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    125
    citations125
    popularityAverage
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The American Journal...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The American Journal of Medicine
      Article . 1985 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
32,269 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Karen Spivak; Zalman Amit; Carlos M.G. Aragon;

    The role of peripherally and centrally acting acetaldehyde in ethanol‐induced conditioned taste aversion (CTA) was investigated using various enzyme manipulations. Cyanamide, an aldehyde dehydrogenase inhibitor (ALDH) elevates blood acetaldehyde levels in the presence of ethanol. Concurrent administration with 4‐methylpyrazole (4MP), an alcohol dehydrogenase inhibitor, prevents peripheral accumulation of acetaldehyde by cyanamide. Under both treatment conditions brain and liver ALDH activity is inhibited. Water‐deprived rats were pretreated 4 hr prior to fluid presentation with intraperitoneal injections of saline (S+S), 4‐methylpyrazole (4MP+S), cyanamide (S+C), or 4‐methylpyrazole + cyanamide (4MP+C). Subsequently, animals were presented with a novel saccharin solution followed immediately by intraperitoneal injection of one of three doses of ethanol (0.4, 0.8, or 1.2 g/kg) or saline vehicle on four occasions. Results suggested that animals pretreated with cyanamide (groups S+C and 4MP+C) drank significantly less saccharin after conditioning with a subthreshold dose of ethanol (0.4 g/kg) in comparison to groups S+S and 4MP+S. Moreover, at the conditioning dose of 1.2 g/kg, cyanamide‐treated animals demonstrated an attenuation of CTA compared to the other two groups. These effects cannot be attributed to elevated blood acetaldehyde levels since pretreatment with 4MP+C prevented peripheral acetaldehyde accumulation. A characteristic common to both cyanamide‐treated groups was the inhibition of brain ALDH. It is therefore suggested that brain ALDH may play a role in the mediation of ethanol‐induced CTAs. It is conceivable that ALDH plays this role by regulating the levels of acetaldehyde in brain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1987 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    21
    citations21
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1987 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: H W Sampson; Gallager S; Harry A. Hogan; Chondra W; +1 Authors

    Background: Chronic alcohol consumption has been demonstrated to be deleterious to bone health. However, binge drinking is the prevalent form of drinking in young people, which was the impetus for the present study to determine the effect of week‐end and week‐long binge drinking on bone health in a young actively growing animal model. Methods: Four‐week‐old, female, Sprague‐Dawley rats were given the amount of 5% alcohol by gavage to be equivalent to a 63 kg woman drinking six beers a day for either 2 or 5 consecutive days per week. Results: There were no changes in the 5‐day binge animals, but the 2‐day binge animals were hypocalcemia Similarly, 2‐day binge animals had slightly increased bone chemistry and histomorphometric values for both tibia and femur, but only femur length, dry weight, and ash weight as well as femur density, presented either as g/ml or ash weight per unit volume, were increased by a statistically significant level. Cross‐section periosteal Mineral Apposition Rate (MAR) was significantly decreased in the 2‐day alcohol fed animals. Conclusions: Actively growing rats given 5% alcohol by gavage for 2 days per week have an increased bone length, bone weight, and bone density. The interpretation of these results must be viewed with great caution because studies of chronic alcohol consumption, and many studies of acute drinking, clearly indicate deleterious effects of alcohol on bone health. Those fed alcohol for 5 days per week showed no change.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1999 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1999 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shawn Litster; Reyhan Taspinar; Emin Caglan Kumbur;

    Abstract In this study, a multi-phase, two-dimensional model that integrates the bipolar plate (BP) and gas diffusion layer (GDL) interfacial morphology was developed to understand the effects of this interface on mass, charge and heat transport and performance of polymer electrolyte fuel cells (PEFCs). Two different case studies were performed. The first case assumes a perfect contact interface between the BP and GDL, whereas in the second case, the BP|GDL interfacial layer was incorporated as a separate domain based on the measured BP|GDL morphology. In the BP|GDL interface case, the interfacial voids were assumed to be filled with liquid water to investigate the role of the interfacial voids. For both cases, the effects of different current densities on the in-plane temperature, saturation, and oxygen concentration distribution in the GDL were investigated. Simulations indicate that the Ohmic and concentration losses are increased due to the inclusion of the realistic BP|GDL interface. The electrical contact resistance contribution of the BP|GDL interface was predicted to be 3.8 mΩcm 2 . The saturation in the GDL was found to be higher for the BP|GDL interface case, which results in higher concentration losses. The temperature was predicted to be slightly higher for the BP|GDL interface case, which could be attributed to the higher thermal contact resistance due to the fewer contact regions at the interface.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kevin P. Gallagher; Yanning Chen; Junda Jin; Rohini Kamal; +1 Authors

    Abstract This paper provides the first estimates of China's global developmental finance institutions in general and China's policy bank lending to foreign governments for energy in particular. According to the China Global Energy Finance database, between 2000 and 2017, China Development Bank (CDB) and China Export-Import Bank (CHEXIM) provided $225.75 billion in overseas energy development finance. We find that: China's ‘policy banks’ and funds have doubled the availability of global development finance –and hold more assets than the major Western-backed MDBs operating in developing countries. With the onset of a new family of funds and multilateral development banks co-financed by China, China is poised to be the largest development lender in the world as Western-backed MDBs appear stagnated in their ability to increase their capital bases. China's global energy portfolio is heavily exposed to country, macroeconomic, climate, and social risks, however. To mitigate such risks and meet the broader sustainable development challenge for the 21st Century, China's development finance will need to shift the composition of its global energy lending in a significant manner.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard L. Bell; Lawrence Lumeng; Zachary A. Rodd; Ting-Kai Li; +5 Authors

    Background:The ventral tegmental area (VTA) is involved in regulating ethanol drinking, and the posterior VTA seems to be a neuroanatomical substrate that mediates the reinforcing effects of ethanol in ethanol‐naïve Wistar and ethanol‐naïve alcohol‐preferring (P) rats. The objective of this study was to test the hypothesis that chronic ethanol drinking increases the sensitivity of the posterior VTA to the reinforcing effects of ethanol.Methods:Two groups of female P rats (one given water as its sole source of fluid and the other given 24‐hr free‐choice access to 15% ethanol and water for at least 8 weeks) were stereotaxically implanted with guide cannulae aimed at the posterior VTA. One week after surgery, rats were placed in standard two‐lever (active and inactive) operant chambers and connected to the microinfusion system. Depression of the active lever produced the infusion of 100 nl of artificial cerebrospinal fluid (CSF) or ethanol. The ethanol‐naïve and chronic ethanol‐drinking groups were assigned to subgroups to receive artificial CSF or 25, 50, 75, or 125 mg/dl of ethanol (n= 6–9/dose/group) to self‐infuse (FR1 schedule) during the 4‐hr sessions given every other day.Results:Compared with the infusions of artificial CSF, the control group reliably (p < 0.05) self‐infused 75 and 125 mg/dl of ethanol but not the lower concentrations. The ethanol‐drinking group had significantly (p < 0.05) higher self‐infusions of 50, 75, and 125 mg/dl of ethanol than artificial CSF during the four acquisition sessions; the number of infusions of all three doses was higher in the ethanol‐drinking group than in the ethanol‐naive group. Both groups decreased responding on the active lever when artificial CSF was substituted for ethanol, and both groups demonstrated robust reinstatement of responding on the active lever when ethanol was restored.Conclusions:Chronic ethanol drinking by P rats increased the sensitivity of the posterior VTA to the reinforcing effects of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 2005 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 2005 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Katherine M, Keyes;

    Alcohol use, binge drinking, and alcohol use disorders have been increasing among older adults in the US population, including adults over 50 as well as adults over 65. Increases in consumption are sharper among women, and among those who use additional substances such as cannabis, and those who are relatively healthy in older adulthood (i.e. those without multimorbidites). This commentary describes these trends as well as provides hypotheses, and the data underlying them, for both supply-side (alcohol marketing and messaging) and demand-side (healthier aging, increased financial stress) potential drivers of these increases. The need for additional resources and focus on older adult drinking is increasingly urgent, as alcohol-attributable deaths escalate among older adults in the United States.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://pubmed.ncbi.nlm.nih.go...
    Other literature type . 2023
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://pubmed.ncbi.nlm.nih.go...
      Other literature type . 2023
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rujian Fu; Song-Yul Choe; Jeffrey W. Fergus; Victor Agubra;

    Abstract When a lithium ion polymer battery (LiPB) is being cycled, one major cause for degradations is the irreversible side reactions between ions and solvent of electrolyte taking place at the surface of anode particles. SEM analysis of cycled battery cells has revealed that the deposits from the side reactions are dispersed not only on particles, but also between the composite anode and the separator. Thus, the solid electrolyte interface (SEI) becomes thicker and extra deposit layers are formed between composite anode and separator. Also, XPS analysis showed that the deposits are composed of Li 2 CO 3 , which is ionic conductive and electronic nonconductive. Based on the mechanisms and findings, we identified four degradation parameters, including volume fraction of accessible active anode, SEI resistance, resistance of deposit layer and diffusion coefficient of electrolyte, to describe capacity and power fade caused by the side reactions. These degradation parameters have been incorporated into an electrochemical thermal model that has been previously developed. The terminal voltage and capacity of the integrated model are compared with experimental data obtained for up to 300 cycles. Finally, the resistance of the deposit layer calculated by the model is validated against the thickness of the deposit layer measured by SEM.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    104
    citations104
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Donald T. Downing; Thomas L. Ray; Candia D. Payne;

    Sphingosine is known to have potent biological activity, including pronounced anti-microbial action in vitro against Candida albicans and some bacteria. Several sphingosine bases are present in stratum corneum at concentrations several orders of magnitude above those in other tissues. Sphingosine forms an undissociated salt with organic sulfates, however, so that the free sphingosine in the epidermis may be inactivated by the cholesterol sulfate known to be present. To investigate this hypothesis, C. albicans was grown in cultures with graded concentrations of sphingosine added in ethanol. In 1% ethanol, 0.1-100 microgram/ml sphingosine completely prevented growth of the organism for 12 h. All cultures eventually entered log-phase growth and reached limiting density at a rate inversely proportional to sphingosine concentration. When sphingosine was added, together with an equimolar amount of cholesterol sulfate, there was no delay in the onset of growth of the yeast and the rate of growth and final density were similar to control cultures. These results demonstrate that natural ratios of cholesterol sulfate neutralize the anti-microbial activity of sphingosine in vitro. In the epidermis, endogenous cholesterol sulfate is hydrolyzed by sterol sulfatase at the skin surface, where the released sphingosine may resist microbial colonization of the stratum corneum. This mechanism for liberating anti-microbial sphingosine base only at the skin surface may protect the viable epidermis against known cytotoxic effects of free sphingosine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Investigative Dermatology
    Article
    License: Elsevier Non-Commercial
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Investigative Dermatology
    Article . 1996
    License: Elsevier Non-Commercial
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Investigative Dermatology
    Article . 1996 . Peer-reviewed
    License: Elsevier Non-Commercial
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Investigative Dermatology
      Article
      License: Elsevier Non-Commercial
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Investigative Dermatology
      Article . 1996
      License: Elsevier Non-Commercial
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Investigative Dermatology
      Article . 1996 . Peer-reviewed
      License: Elsevier Non-Commercial
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nathan Fiala;

    Abstract The ecological footprint is a measure of the resources necessary to produce the goods that an individual or population consumes. It is also used as a measure of sustainability, though evidence suggests that it falls short. The assumptions behind footprint calculations have been extensively criticized; I present here further evidence that it fails to satisfy simple economic principles because the basic assumptions are contradicted by both theory and historical data. Specifically, I argue that the footprint arbitrarily assumes both zero greenhouse gas emissions, which may not be ex ante optimal, and national boundaries, which makes extrapolating from the average ecological footprint problematic. The footprint also cannot take into account intensive production, and so comparisons to biocapacity are erroneous. Using only the assumptions of the footprint then, one could argue that the Earth can sustain greatly increased production, though there are important limitations that the footprint cannot address, such as land degradation. Finally, the lack of correlation between land degradation and the ecological footprint obscures the effects of a larger sustainability problem. Better measures of sustainability would address these issues directly.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Economics
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    227
    citations227
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Economicsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Economics
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hella Gergely; Hella Gergely; Jerzy Stachura; Andrzej S. Tarnawski; +3 Authors

    The abilities of antacid (Mylanta II), sucralfate, cimetidine, and ranitidine to protect the gastric mucosa against ethanol-induced necrosis were compared in a standardized, experimental rat model. Fasted rats received pretreatment with either saline, Mylanta II, 500 mg/kg of sucralfate, 50 mg/kg of cimetidine, or 50 mg/kg of ranitidine. This was followed one hour later by intragastric administration of 2 ml of 100 percent ethanol. Gastric mucosal injury was assessed four hours after administration of ethanol by quantitation of gross mucosal necrosis, assessment of mucosal histology, and determination of intragastric blood and protein concentrations. Pretreatment with Mylanta II or sucralfate significantly reduced ethanol-induced gastric mucosal necrosis. The protective effect of sucralfate was six to 10 times greater than that of Mylanta II. H2-receptor antagonists increased ethanol-induced gastric mucosal necrosis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The American Journal...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The American Journal of Medicine
    Article . 1985 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    125
    citations125
    popularityAverage
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The American Journal...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The American Journal of Medicine
      Article . 1985 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph