Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cholesterol Sulfate Protects Candida albicans from Inhibition by Sphingosine in Vitro

Authors: Donald T. Downing; Thomas L. Ray; Candia D. Payne;

Cholesterol Sulfate Protects Candida albicans from Inhibition by Sphingosine in Vitro

Abstract

Sphingosine is known to have potent biological activity, including pronounced anti-microbial action in vitro against Candida albicans and some bacteria. Several sphingosine bases are present in stratum corneum at concentrations several orders of magnitude above those in other tissues. Sphingosine forms an undissociated salt with organic sulfates, however, so that the free sphingosine in the epidermis may be inactivated by the cholesterol sulfate known to be present. To investigate this hypothesis, C. albicans was grown in cultures with graded concentrations of sphingosine added in ethanol. In 1% ethanol, 0.1-100 microgram/ml sphingosine completely prevented growth of the organism for 12 h. All cultures eventually entered log-phase growth and reached limiting density at a rate inversely proportional to sphingosine concentration. When sphingosine was added, together with an equimolar amount of cholesterol sulfate, there was no delay in the onset of growth of the yeast and the rate of growth and final density were similar to control cultures. These results demonstrate that natural ratios of cholesterol sulfate neutralize the anti-microbial activity of sphingosine in vitro. In the epidermis, endogenous cholesterol sulfate is hydrolyzed by sterol sulfatase at the skin surface, where the released sphingosine may resist microbial colonization of the stratum corneum. This mechanism for liberating anti-microbial sphingosine base only at the skin surface may protect the viable epidermis against known cytotoxic effects of free sphingosine.

Related Organizations
Keywords

Antifungal Agents, Ethanol, Cell Biology, Dermatology, In Vitro Techniques, Biochemistry, Sphingosine, Candida albicans, Animals, Drug Interactions, Cholesterol Esters, Molecular Biology, Cell Division, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Top 10%
hybrid
Related to Research communities
Energy Research