- home
- Advanced Search
- Energy Research
- Closed Access
- other engineering and technologies
- ZA
- Energy Research
- Closed Access
- other engineering and technologies
- ZA
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Ralph Muvhiiwa;
Ralph Muvhiiwa
Ralph Muvhiiwa in OpenAIREBaraka Celestin Sempuga;
Jaco Van Der Walt;Baraka Celestin Sempuga
Baraka Celestin Sempuga in OpenAIREDiane Hildebrandt;
Diane Hildebrandt
Diane Hildebrandt in OpenAIREAbstract This work shows work flows supported by experimental work to analyse the efficiency of a plasma system in biomass conversion processes. The most common set of problems encountered when using biomass-to-energy (BTE) processes relate to tar formation and product gas composition. However, using plasma technology to convert biomass provides a solution because it unlocks more energy than can be achieved by other BTE systems by using a heat supply derived from electricity. The research presented in this paper focuses on the conversion of biomass to chemical energy (in gaseous form) with the aid of the electrical energy supplied by a water-cooled nitrogen plasma torch. The authors conducted a series of experiments in a continuous pyrolysis set up in which wood pellets were converted to syngas in a small-scale laboratory nitrogen plasma torch reactor with a maximum power supply of 15 kW. The efficiency of the process was measured in terms of the carbon conversion to all product gases which changed from 43 to 77%, at temperatures ranging from 400 °C to 1000 °C respectively. The combined carbon monoxide and hydrogen mole concentration in the product gas (without nitrogen) was 86% at 1:1 ratio for all temperatures studied. Syngas yield increased with increase in temperature. The overall biomass conversion obtained increased from 46% to 82% for the temperatures 400 °C to 1000 °C respectively, with the balance comprising carbon-rich solid residue and liquid. The work flow shows that a plasma system can get to high temperatures but work is also degraded in the overall process. Exergy analysis shows that the work lost by the overall process decreases with increase in process temperature.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2018.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2018.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Rashid Mehmood;
Rashid Mehmood
Rashid Mehmood in OpenAIRESohail Nadeem;
Sandile S. Motsa;Sohail Nadeem
Sohail Nadeem in OpenAIREAbstract The present study numerically investigates the oblique flow of a Walter-B type nano fluid over a convective surface. Effects of transversely applied magnetic field are also taken into account. The governing system is presented in the form of coupled differential equations by means of suitable similarity transformations which are then solved by using Spectral Quasilinearisation Method (QLM) and the Spectral Local Linearization Method (LLM). The results for velocities temperature as well as nano particle concentration are plotted against pertinent flow parameters. It is found that applied magnetic field M has opposite influence on normal and tangential components of local shear stress and it decays the local heat flux and mass flux rate at the stretching convective surface. Thermophoresis and Brownian diffusion effects on the local heat and mass flux rate are found to be non-similar in a quantitative sense. In order to signify the validity of current numerical scheme, a remarkable agreement is presented with the previous literature for some limiting cases.
International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2015.01.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Thermal SciencesArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijthermalsci.2015.01.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors:Zakir Ullah;
Gul Zaman; Ikram Ullah;Zakir Ullah
Zakir Ullah in OpenAIREOluwole Daniel Makinde;
Oluwole Daniel Makinde
Oluwole Daniel Makinde in OpenAIREAbstractThis work presents a theoretical numerical study of the bioconvection flow of Prandtl–Eyring nanofluid through a stretching cylinder with gyrotactic microorganisms. The mathematical model developed also incorporated the inclined magnetic field and heat generation effects. Further, stratification conditions are considered at the boundary of the stretched cylinder. The described flow problem conducting coupled high‐order partial differential equations (PDEs) is first reduced to the nonlinear system of ordinary differential equations (ODEs) by introducing suitable mathematical transformations. The resulting highly nonlinear flow equations are treated numerically by applying the shooting method. A comparison of the adapted method with previously reported data is also made to validate the presented results. The comparisons are in excellent agreement. The individual effect of controlling flow parameters/numbers on the flow profiles and physical quantities of engineering interest are represented graphically with physical descriptions. The significant results of the present analysis revealed that a rise in bioconvection Rayleigh number, thermal Grashof number, and angle of inclination boosts the velocity profile. The study shows that thermal stratification, mass stratification, and motile density stratification parameters diminish the temperature, concentration, and microorganism profiles, respectively. The nondimensional Sherwood number is decelerated significantly by thermophoresis and mass stratification parameters.
ZAMM ‐ Journal of Ap... arrow_drop_down ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und MechanikArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/zamm.202300358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZAMM ‐ Journal of Ap... arrow_drop_down ZAMM ‐ Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und MechanikArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/zamm.202300358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2018Publisher:IEEE Authors:Josiah L. Munda;
N.P. Memane;Josiah L. Munda
Josiah L. Munda in OpenAIREOlawale Popoola;
Olawale Popoola
Olawale Popoola in OpenAIREFrequency of supply is an important aspect of electrical power system. Active power balance and frequency control are important tasks in the daily management of a power system. Due to variation in power demand as a result of load changes based on consumer usage, resultant change in frequency impacts on power system operation. The phenomena i.e. load fluctuation creates a burden on the generator prime mover. When the load demand is greater than the generation, generator speed drops, thus initiating a drop-in frequency. An unstable power system condition could lead to generator falling out of synchronism or overheating machines or malfunction of equipment. Should the frequency drop below certain limits automatic load shedding will occur. Minimization of frequency error will enable the matching of frequency system generation to load frequency to nullify sudden blackouts and system imbalance. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining system frequency and power flows closer to specified values as much as possible. Therefore, in a modern power system, load frequency control plays a fundamental role, as a help service, in supporting and providing better conditions for the electricity trading. This paper presents a case study of PID controllers that can withstand load variations and produce improved functionality outputs (results) in a power system. The PID controller is incorporated with a trignometric function of a fourier series to mimimise the change in frequency. To ascertain the proficiency of the proposed technique, different versions of the PID controller in operation was undertaken. The proposed adaptive controller design provided the best results in terms of both frequency deviation and speed drop.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/powera...Conference object . 2018 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powerafrica.2018.8632880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/powera...Conference object . 2018 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/powerafrica.2018.8632880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Pengfei Zhu;
Pengfei Zhu
Pengfei Zhu in OpenAIREZhen Wu;
Jing Yao; Leilei Guo; Hongli Yan;Serge Nyallang Nyamsi;
Serge Nyallang Nyamsi
Serge Nyallang Nyamsi in OpenAIRESandra Kurko;
Fusheng Yang; Zaoxiao Zhang;Sandra Kurko
Sandra Kurko in OpenAIREAbstract In order to uncover the inner working mechanism and performance of solid oxide fuel cell (SOFC) with biomass gasification syngas as fuel, a two dimensional SOFC multi-physical field model is established. This study makes up for the deficiency that the previous studies of coupling biomass gasification unit and SOFC stack mostly stay at the system level. The results show that the SOFC fueled by the syngas produced from gasification of biomass with steam as the agent has the best performance. The peak power density could achieve approximately 10240 W m−2. With the improvement of operating temperature, the peak power density of SOFC will be increased. At the temperature of 1123 K, the peak power density could achieve about 15128 W m−2. The average reaction rate of water gas shift (WGS) reaction is −29.73 mol m−3 s−1 when the operating temperature is 1123 K. This indicates that the WGS reaction will proceed in reverse direction at high temperatures, thereby reducing the hydrogen concentration. In addition, increase in the anode flux and decrease in the cell length lead to the increase of SOFC current density. In general, this work could provide guidance for the optimization and practical application of SOFC using biomass syngas as fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2021.230470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV This paper presents the application of quantitative feedback design techniques for tuning stabilizers in multi-machine power systems. This approach facilitates easy handling of multiple plant models thereby yielding robust and reliable stabilizer parameters. Methods of incorporating closed-loop stability and damping performance requirements into the design are explained. In the proposed sequential tuning technique, bounds on the stabilizer frequency response are computed for stability and performance at each of the given set of operating conditions of the system. A manual controller shaping then yields the desired stabilizer parameters. Application to an illustrative textbook example of an 11-bus, four-generator system is also included.
Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2004.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Electric Power Syste... arrow_drop_down Electric Power Systems ResearchArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.epsr.2004.06.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors:M. Mugyema;
M. Mugyema
M. Mugyema in OpenAIREC.D. Botha;
C.D. Botha
C.D. Botha in OpenAIREM.J. Kamper;
M.J. Kamper
M.J. Kamper in OpenAIRER.-J. Wang;
+1 AuthorsR.-J. Wang
R.-J. Wang in OpenAIREM. Mugyema;
M. Mugyema
M. Mugyema in OpenAIREC.D. Botha;
C.D. Botha
C.D. Botha in OpenAIREM.J. Kamper;
M.J. Kamper
M.J. Kamper in OpenAIRER.-J. Wang;
A.B. Sebitosi;R.-J. Wang
R.-J. Wang in OpenAIREJournal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.106573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.106573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Adeniyi Jide Isafiade;
Nicholas Cowen; Andrew Vogel;Adeniyi Jide Isafiade
Adeniyi Jide Isafiade in OpenAIRELidija Čuček;
+1 AuthorsLidija Čuček
Lidija Čuček in OpenAIREAdeniyi Jide Isafiade;
Nicholas Cowen; Andrew Vogel;Adeniyi Jide Isafiade
Adeniyi Jide Isafiade in OpenAIRELidija Čuček;
Lidija Čuček
Lidija Čuček in OpenAIREZdravko Kravanja;
Zdravko Kravanja
Zdravko Kravanja in OpenAIREJournal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.134921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2022.134921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Pierre Adriaanse;
Pierre Adriaanse
Pierre Adriaanse in OpenAIREJames Alistair Fox;
James Alistair Fox
James Alistair Fox in OpenAIRENeil T. Stacey;
Neil T. Stacey
Neil T. Stacey in OpenAIREAbstract Agriculture is one of mankind's most ecologically impactful activities, representing 70% of society's water usage and 13% of greenhouse gas emissions along with direct impacts on ecologies through land usage, habitat destruction and fertilizer runoff. Global population and per capita demand for food are both growing steadily, so it can be expected that agriculture's ecological impacts will continue to escalate rapidly. Intensive farming techniques are needed, not only to increase crop production but also to manage ecological damage. Greenhouse temperature is instrumental in determining crop yields and water usage, while active ventilation has been shown to contribute significantly to evaporative water losses. It follows that passive methods of greenhouse temperature management are crucial to affordable and efficient agriculture, particularly in developing nations. This research uses continuous temperature logging in small experimental greenhouse units to better understand their thermal interaction with the ground and to evaluate possible modifications in terms of their thermal effects. It is found that partial burying of greenhouses is an effective means of temperature stabilization in hot climates. The analysis showed energy savings of up to 13% and water savings up to 8% are possible, with a payback period of less than a month. This demonstrates that partial burying is both environmentally and financially favourable.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Ahmed N. Abdalla;
A.S. El-Shafay; Yongfeng Ju; Magda Abd El-Rahman; +2 AuthorsAhmed N. Abdalla
Ahmed N. Abdalla in OpenAIREAhmed N. Abdalla;
A.S. El-Shafay; Yongfeng Ju; Magda Abd El-Rahman;Ahmed N. Abdalla
Ahmed N. Abdalla in OpenAIREMuhammad Shahzad Nazir;
Mohsen Sharifpur;Muhammad Shahzad Nazir
Muhammad Shahzad Nazir in OpenAIREJournal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2022.104386&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu