
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch reactor

Abstract This work shows work flows supported by experimental work to analyse the efficiency of a plasma system in biomass conversion processes. The most common set of problems encountered when using biomass-to-energy (BTE) processes relate to tar formation and product gas composition. However, using plasma technology to convert biomass provides a solution because it unlocks more energy than can be achieved by other BTE systems by using a heat supply derived from electricity. The research presented in this paper focuses on the conversion of biomass to chemical energy (in gaseous form) with the aid of the electrical energy supplied by a water-cooled nitrogen plasma torch. The authors conducted a series of experiments in a continuous pyrolysis set up in which wood pellets were converted to syngas in a small-scale laboratory nitrogen plasma torch reactor with a maximum power supply of 15 kW. The efficiency of the process was measured in terms of the carbon conversion to all product gases which changed from 43 to 77%, at temperatures ranging from 400 °C to 1000 °C respectively. The combined carbon monoxide and hydrogen mole concentration in the product gas (without nitrogen) was 86% at 1:1 ratio for all temperatures studied. Syngas yield increased with increase in temperature. The overall biomass conversion obtained increased from 46% to 82% for the temperatures 400 °C to 1000 °C respectively, with the balance comprising carbon-rich solid residue and liquid. The work flow shows that a plasma system can get to high temperatures but work is also degraded in the overall process. Exergy analysis shows that the work lost by the overall process decreases with increase in process temperature.
- University of South Africa South Africa
- South African Nuclear Energy Corporation (South Africa) South Africa
- University of South Africa South Africa
- South African Nuclear Energy Corporation (South Africa) South Africa
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
