- home
- Advanced Search
Filters
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020Publisher:Cold Spring Harbor Laboratory Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivStefanie Hellweg; Kiyoshi Takahashi; Paul Leadley; HyeJin Kim; Shinichiro Fujimori; Shinichiro Fujimori; Andrew J. Hoskins; Elke Stehfest; Alexander Popp; Matthew V. Talluto; Aafke M. Schipper; Aafke M. Schipper; Cory Merow; Cory Merow; B.N.B. Strassburg; B.N.B. Strassburg; B.N.B. Strassburg; David Leclère; Tom Harwood; Carlo Rondinini; Richard Sharp; Akiko Hirata; George C. Hurtt; Simon Ferrier; Florian Wolf; Petr Havlik; Peter Anthoni; Louise Chini; Chris Ware; Daniele Baisero; Tetsuya Matsui; Wilfried Thuiller; Johan Meijer; Florian Humpenöder; Nicolas Titeux; Nicolas Titeux; Isabel M.D. Rosa; Isabel M.D. Rosa; Jelle P. Hilbers; Vanessa Haverd; Andy Purvis; Andy Purvis; Piero Visconti; Piero Visconti; Piero Visconti; Haruka Ohashi; D.P. van Vuuren; D.P. van Vuuren; Andreas Krause; Andreas Krause; Rob Alkemade; Rob Alkemade; Samantha L. L. Hill; Samantha L. L. Hill; Inês S. Martins; Justin A. Johnson; Tomoko Hasegawa; Tomoko Hasegawa; Walter Jetz; Josef Settele; Josef Settele; Jan H. Janse; Mike Harfoot; Almut Arneth; Rebecca Chaplin-Kramer; Benjamin Poulter; M. Di Marco; Carlos A. Guerra; Henrique M. Pereira; Henrique M. Pereira; Michael Obersteiner; F. Di Fulvio; Benjamin Quesada; Benjamin Quesada;AbstractDespite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.One Sentence SummaryDevelopment pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.
bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:MDPI AG Ajay Gambhir; Laurent Drouet; David McCollum; Tamaryn Napp; Dan Bernie; Adam Hawkes; Oliver Fricko; Petr Havlik; Keywan Riahi; Valentina Bosetti; Jason Lowe;doi: 10.3390/en10010089
handle: 11565/3997180 , 10044/1/43269
This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2 °C goal is, when compared to the 2.5–4 °C goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2 °C goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2 °C is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.
CORE (RIOXX-UK Aggre... arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Inter-Research Science Center Funded by:UKRI | MaRIUS: Managing the Risk...UKRI| MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water ScarcityTrnka, M.; Hayes, Michael; Jurecka, F.; Bartosova, Lenka; Anderson, Martha; Brazdil, Rudolf; Brown, Jesslyn; Camarero, J.J.; Cudlin, Pavel; Dobrovolny, Petr; Eitzinger, J.; Feng, Song; Finnessey, Taryn; Gregoric, Gregor; Havlik, Petr; Hain, Christopher; Holman, Ian; Johnson, David; Kersebaum, K.C.; Ljungqvist, Fredrik Charpentier; Luterbacher, Jurg; Micale, Fabio; Hartl-Meier, Claudia; Mozny, Martin; Nejedlik, P.; Olesen, J.E.; Ruiz Ramos, Margarita; Rötter, Reimund; Senay, Gabriel; Vicente Serrano, Sergio M.; Svoboda, Mark; Susnik, Andreja; Tadesse, Tsegaye; Vizina, Adam; Wardlow, Brian; Zalud, Z.; Büntgen, Ulf;doi: 10.3354/cr01509
Addressing timely and relevant questions across a multitude of spatio-temporal scales, state-of-the-art interdisciplinary drought research will likely increase in importance under projected climate change. Given the complexity of the various direct and indirect causes and consequences of a drier world, scientific tasks need to be coordinated efficiently. Drought-related research endeavors ranging from individual projects to global initiatives therefore require prioritization. Here, we present 60 priority questions for optimizing future drought research. This topical catalogue reflects the experience of 65 scholars from 21 countries and almost 20 fields of research in both natural sciences and the humanities. The set of drought-related questions primarily covers drought monitoring, impacts, forecasting, climatology, adaptation, as well as planning and policy. The questions highlight the increasingly important role of remote sensing techniques in drought monitoring, importance of drought forecasting and understanding the relationships between drought parameters and drought impacts, but also challenges of drought adaptation and preparedness policies.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: https://doi.org/10.3354/cr01509Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: https://doi.org/10.3354/cr01509Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2011Publisher:Elsevier BV Funded by:EC | ANIMALCHANGE, EC | CCTAME, EC | EUROGEOSSEC| ANIMALCHANGE ,EC| CCTAME ,EC| EUROGEOSSHavlik, Petr; Schneider, Uwe A.; Schmid, Erwin; Bottcher, Hannes; Fritz, Steffen; Skalsky, Rastislav; Aoki, Kentaro; de Cara, Stephane; Kindermann, Georg; Kraxner, Florian; Leduc, Sylvain; Mccallum, Ian; Mosnier, Aline; Sauer, Timm; Obersteiner, Michael;Recently, an active debate has emerged around greenhouse gas emissions due to indirect land use change (iLUC) of expanding agricultural areas dedicated to biofuel production. In this paper we provide a detailed analysis of the iLUC effect, and further address the issues of deforestation, irrigation water use, and crop price increases due to expanding biofuel acreage. We use GLOBIOM – an economic partial equilibrium model of the global forest, agriculture, and biomass sectors with a bottom-up representation of agricultural and forestry management practices. The results indicate that second generation biofuel production fed by wood from sustainably managed existing forests would lead to a negative iLUC factor, meaning that overall emissions are 27% lower compared to the “No biofuel” scenario by 2030. The iLUC factor of first generation biofuels global expansion is generally positive, requiring some 25 years to be paid back by the GHG savings from the substitution of biofuels for conventional fuels. Second generation biofuels perform better also with respect to the other investigated criteria; on the condition that they are not sourced from dedicated plantations directly competing for agricultural land. If so, then efficient first generation systems are preferable. Since no clear technology champion for all situations exists, we would recommend targeting policy instruments directly at the positive and negative effects of biofuel production rather than at the production itself.
Energy Policy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.625 citations 625 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy Policy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Petr Havlik; Michael Obersteiner; Gary Bull; Saeed Ghafghazi; Saeed Ghafghazi; Kyle Lochhead; Warren Mabee; Nicklas Forsell;Abstract Potential scenarios for the forest bioeconomy are heavily reliant on price assumptions; in particular, any abrupt changes in prices have a profound impact on the relevancy of any sector analysis. The objective of this paper was to demonstrate a new forest sector approach for incorporating price uncertainties in order to improve our assessment of investment decision making alternatives. Methodologically, we linked a multivariate generalized autoregressive conditional heteroscedasticity model (mGARCH (1,1)) with three global land use scenarios that are of strategic importance to the forest bioeconomy. The three scenarios were formulated as i) a business as usual scenario, ii) a high biomass usage scenario and iii) a no-growth scenario. Our results indicate an upward trend in prices over time for all three scenarios and for most woody biomass commodities. Under all scenarios, price volatility in the forest sector would be smaller than that for the fossil fuel energy (i.e. oil and natural gas). Price volatilities from fossil fuel markets are positively influencing woody biomass price volatility and positively influencing pulp volatility. These results are discussed in the context of a case study describing investment alternatives for a district heating facility with options for: woody biomass, natural gas, or heating oil.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Wiley Funded by:EC | LUC4C, EC | SIGMAEC| LUC4C ,EC| SIGMACarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9xq5m34hData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9xq5m34hData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | U-Grass: Understanding an..., EC | VERIFY, UKRI | Soils Research to deliver... +2 projectsUKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplands ,EC| VERIFY ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,EC| IMBALANCE-P ,UKRI| Delivering Food Security on Limited Land (DEVIL)Jinfeng Chang; Philippe Ciais; Thomas Gasser; Pete Smith; Mario Herrero; Petr Havlík; Michael Obersteiner; Bertrand Guenet; Daniel Goll; Wei Li; Victoria Naipal; Shushi Peng; Chunjing Qiu; Hanqin Tian; Nicolas Viovy; Chao Ye; Dan Zhu;pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
IIASA DARE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 194 citations 194 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Embargo end date: 27 Nov 2019Publisher:American Association for the Advancement of Science (AAAS) Trnka, Miroslav; Feng, Song; Semenov, Mikhail A; Olesen, Jørgen E; Kersebaum, Kurt Christian; Rötter, Reimund P; Semerádová, Daniela; Klem, Karel; Huang, Wei; Ruiz-Ramos, Margarita; Hlavinka, Petr; Meitner, Jan; Balek, Jan; Havlík, Petr; Büntgen, Ulf;The risk of severe water scarcity events simultaneously affecting key wheat-producing areas doubles despite CO 2 mitigation efforts.
IIASA DARE arrow_drop_down Göttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Göttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | ENGAGEEC| ENGAGEFricko, Oliver; Frank, Stefan; Gidden, Matthew; Huppmann, Daniel; Johnson, Nils A.; Kishimoto, Paul Natsuo; Kolp, Peter; Lovat, Francesco; McCollum, David L.; Min, Jihoon; Rao, Shilpa; Riahi, Keywan; Rogner, Holger; van Ruijven, Bas; Vinca, Adriano; Zakeri, Behnam; Augustynczik, Andrey Lessa Derci; Deppermann, Andre; Ermolieva, Tatiana; Gusti, Mykola; Lauri, Pekka; Heyes, Chris; Schoepp, Wolfgang; Klimont, Zbigniew; Havlik, Petr; Krey, Volker;This dataset contains the parameterization of a no-policy baseline scenario of the global 11-regional MESSAGEix-GLOBIOM integrated assessment model. Regions, time periods, commodities, technologies and relations included in this model are described in a separate repository. The dataset relies on the MESSAGEix modeling framework (Huppmann et al. 2019) and can be imported into MESSAGEix via the read_excel() functionality for which a tutorial is available. After the import the scenario can be solved and modified to create new scenarios. Note that the published scenario as included in the ENGAGE global scenarios dataset has been run with a release candidate of version 3.4.0 of MESSAGEix.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 985visibility views 985 download downloads 855 Powered by
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:EC | ENGAGEEC| ENGAGEMykola Gusti; Mykola Gusti; Johannes Emmerling; Detlef P. van Vuuren; Detlef P. van Vuuren; Andre Deppermann; Alexander Popp; Christoph Bertram; Ken Oshiro; Keywan Riahi; Keywan Riahi; Yuki Ochi; Mathijs Harmsen; Mathijs Harmsen; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Pedro Rochedo; Anique-Marie Cabardos; Florian Humpenöder; Petr Havlik; Bas van Ruijven; Florian Fosse; Volker Krey; Roberto Schaeffer; Tomoko Hasegawa; Tomoko Hasegawa; Jacques Després; Kimon Keramidas; Stefan Frank; Laurent Drouet;Delaying climate mitigation action and allowing a temporary overshoot of temperature targets require large-scale carbon dioxide removal (CDR) in the second half of this century that may induce adverse side effects on land, food and ecosystems. Meanwhile, meeting climate goals without global net-negative emissions inevitably needs early and rapid emission reduction measures, which also brings challenges in the near term. Here we identify the implications for land-use and food systems of scenarios that do not depend on land-based CDR technologies. We find that early climate action has multiple benefits and trade-offs, and avoids the need for drastic (mitigation-induced) shifts in land use in the long term. Further long-term benefits are lower food prices, reduced risk of hunger and lower demand for irrigation water. Simultaneously, however, near-term mitigation pressures in the agriculture, forest and land-use sector and the required land area for energy crops increase, resulting in additional risk of food insecurity.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint 2020Publisher:Cold Spring Harbor Laboratory Funded by:DFG | German Centre for Integra...DFG| German Centre for Integrative Biodiversity Research - iDivStefanie Hellweg; Kiyoshi Takahashi; Paul Leadley; HyeJin Kim; Shinichiro Fujimori; Shinichiro Fujimori; Andrew J. Hoskins; Elke Stehfest; Alexander Popp; Matthew V. Talluto; Aafke M. Schipper; Aafke M. Schipper; Cory Merow; Cory Merow; B.N.B. Strassburg; B.N.B. Strassburg; B.N.B. Strassburg; David Leclère; Tom Harwood; Carlo Rondinini; Richard Sharp; Akiko Hirata; George C. Hurtt; Simon Ferrier; Florian Wolf; Petr Havlik; Peter Anthoni; Louise Chini; Chris Ware; Daniele Baisero; Tetsuya Matsui; Wilfried Thuiller; Johan Meijer; Florian Humpenöder; Nicolas Titeux; Nicolas Titeux; Isabel M.D. Rosa; Isabel M.D. Rosa; Jelle P. Hilbers; Vanessa Haverd; Andy Purvis; Andy Purvis; Piero Visconti; Piero Visconti; Piero Visconti; Haruka Ohashi; D.P. van Vuuren; D.P. van Vuuren; Andreas Krause; Andreas Krause; Rob Alkemade; Rob Alkemade; Samantha L. L. Hill; Samantha L. L. Hill; Inês S. Martins; Justin A. Johnson; Tomoko Hasegawa; Tomoko Hasegawa; Walter Jetz; Josef Settele; Josef Settele; Jan H. Janse; Mike Harfoot; Almut Arneth; Rebecca Chaplin-Kramer; Benjamin Poulter; M. Di Marco; Carlos A. Guerra; Henrique M. Pereira; Henrique M. Pereira; Michael Obersteiner; F. Di Fulvio; Benjamin Quesada; Benjamin Quesada;AbstractDespite the scientific consensus on the extinction crisis and its anthropogenic origin, the quantification of historical trends and of future scenarios of biodiversity and ecosystem services has been limited, due to the lack of inter-model comparisons and harmonized scenarios. Here, we present a multi-model analysis to assess the impacts of land-use and climate change from 1900 to 2050. During the 20th century provisioning services increased, but biodiversity and regulating services decreased. Similar trade-offs are projected for the coming decades, but they may be attenuated in a sustainability scenario. Future biodiversity loss from land-use change is projected to keep up with historical rates or reduce slightly, whereas losses due to climate change are projected to increase greatly. Renewed efforts are needed by governments to meet the 2050 vision of the Convention on Biological Diversity.One Sentence SummaryDevelopment pathways exist that allow for a reduction of the rates of biodiversity loss from land-use change and improvement in regulating services but climate change poses an increasing challenge.
bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert bioRxiv arrow_drop_down https://doi.org/10.1101/2020.0...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:MDPI AG Ajay Gambhir; Laurent Drouet; David McCollum; Tamaryn Napp; Dan Bernie; Adam Hawkes; Oliver Fricko; Petr Havlik; Keywan Riahi; Valentina Bosetti; Jason Lowe;doi: 10.3390/en10010089
handle: 11565/3997180 , 10044/1/43269
This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH) harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2), to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2 °C goal is, when compared to the 2.5–4 °C goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2 °C goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2 °C is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.
CORE (RIOXX-UK Aggre... arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/89/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio istituzionale della Ricerca - BocconiArticle . 2017License: CC BYData sources: Archivio istituzionale della Ricerca - BocconiImperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/43269Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Inter-Research Science Center Funded by:UKRI | MaRIUS: Managing the Risk...UKRI| MaRIUS: Managing the Risks, Impacts and Uncertainties of droughts and water ScarcityTrnka, M.; Hayes, Michael; Jurecka, F.; Bartosova, Lenka; Anderson, Martha; Brazdil, Rudolf; Brown, Jesslyn; Camarero, J.J.; Cudlin, Pavel; Dobrovolny, Petr; Eitzinger, J.; Feng, Song; Finnessey, Taryn; Gregoric, Gregor; Havlik, Petr; Hain, Christopher; Holman, Ian; Johnson, David; Kersebaum, K.C.; Ljungqvist, Fredrik Charpentier; Luterbacher, Jurg; Micale, Fabio; Hartl-Meier, Claudia; Mozny, Martin; Nejedlik, P.; Olesen, J.E.; Ruiz Ramos, Margarita; Rötter, Reimund; Senay, Gabriel; Vicente Serrano, Sergio M.; Svoboda, Mark; Susnik, Andreja; Tadesse, Tsegaye; Vizina, Adam; Wardlow, Brian; Zalud, Z.; Büntgen, Ulf;doi: 10.3354/cr01509
Addressing timely and relevant questions across a multitude of spatio-temporal scales, state-of-the-art interdisciplinary drought research will likely increase in importance under projected climate change. Given the complexity of the various direct and indirect causes and consequences of a drier world, scientific tasks need to be coordinated efficiently. Drought-related research endeavors ranging from individual projects to global initiatives therefore require prioritization. Here, we present 60 priority questions for optimizing future drought research. This topical catalogue reflects the experience of 65 scholars from 21 countries and almost 20 fields of research in both natural sciences and the humanities. The set of drought-related questions primarily covers drought monitoring, impacts, forecasting, climatology, adaptation, as well as planning and policy. The questions highlight the increasingly important role of remote sensing techniques in drought monitoring, importance of drought forecasting and understanding the relationships between drought parameters and drought impacts, but also challenges of drought adaptation and preparedness policies.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: https://doi.org/10.3354/cr01509Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2018License: CC BYFull-Text: https://doi.org/10.3354/cr01509Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2023Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2011Publisher:Elsevier BV Funded by:EC | ANIMALCHANGE, EC | CCTAME, EC | EUROGEOSSEC| ANIMALCHANGE ,EC| CCTAME ,EC| EUROGEOSSHavlik, Petr; Schneider, Uwe A.; Schmid, Erwin; Bottcher, Hannes; Fritz, Steffen; Skalsky, Rastislav; Aoki, Kentaro; de Cara, Stephane; Kindermann, Georg; Kraxner, Florian; Leduc, Sylvain; Mccallum, Ian; Mosnier, Aline; Sauer, Timm; Obersteiner, Michael;Recently, an active debate has emerged around greenhouse gas emissions due to indirect land use change (iLUC) of expanding agricultural areas dedicated to biofuel production. In this paper we provide a detailed analysis of the iLUC effect, and further address the issues of deforestation, irrigation water use, and crop price increases due to expanding biofuel acreage. We use GLOBIOM – an economic partial equilibrium model of the global forest, agriculture, and biomass sectors with a bottom-up representation of agricultural and forestry management practices. The results indicate that second generation biofuel production fed by wood from sustainably managed existing forests would lead to a negative iLUC factor, meaning that overall emissions are 27% lower compared to the “No biofuel” scenario by 2030. The iLUC factor of first generation biofuels global expansion is generally positive, requiring some 25 years to be paid back by the GHG savings from the substitution of biofuels for conventional fuels. Second generation biofuels perform better also with respect to the other investigated criteria; on the condition that they are not sourced from dedicated plantations directly competing for agricultural land. If so, then efficient first generation systems are preferable. Since no clear technology champion for all situations exists, we would recommend targeting policy instruments directly at the positive and negative effects of biofuel production rather than at the production itself.
Energy Policy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.625 citations 625 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy Policy arrow_drop_down http://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portalhttp://dx.doi.org/10.1016/j.en...Other literature typeData sources: European Union Open Data PortalInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Petr Havlik; Michael Obersteiner; Gary Bull; Saeed Ghafghazi; Saeed Ghafghazi; Kyle Lochhead; Warren Mabee; Nicklas Forsell;Abstract Potential scenarios for the forest bioeconomy are heavily reliant on price assumptions; in particular, any abrupt changes in prices have a profound impact on the relevancy of any sector analysis. The objective of this paper was to demonstrate a new forest sector approach for incorporating price uncertainties in order to improve our assessment of investment decision making alternatives. Methodologically, we linked a multivariate generalized autoregressive conditional heteroscedasticity model (mGARCH (1,1)) with three global land use scenarios that are of strategic importance to the forest bioeconomy. The three scenarios were formulated as i) a business as usual scenario, ii) a high biomass usage scenario and iii) a no-growth scenario. Our results indicate an upward trend in prices over time for all three scenarios and for most woody biomass commodities. Under all scenarios, price volatility in the forest sector would be smaller than that for the fossil fuel energy (i.e. oil and natural gas). Price volatilities from fossil fuel markets are positively influencing woody biomass price volatility and positively influencing pulp volatility. These results are discussed in the context of a case study describing investment alternatives for a district heating facility with options for: woody biomass, natural gas, or heating oil.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Wiley Funded by:EC | LUC4C, EC | SIGMAEC| LUC4C ,EC| SIGMACarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9xq5m34hData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 127 citations 127 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/9xq5m34hData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiahttp://dx.doi.org/10.1111/gcb....Other literature typeData sources: European Union Open Data PortalPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:UKRI | U-Grass: Understanding an..., EC | VERIFY, UKRI | Soils Research to deliver... +2 projectsUKRI| U-Grass: Understanding and enhancing soil ecosystem services and resilience in UK grass and croplands ,EC| VERIFY ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,EC| IMBALANCE-P ,UKRI| Delivering Food Security on Limited Land (DEVIL)Jinfeng Chang; Philippe Ciais; Thomas Gasser; Pete Smith; Mario Herrero; Petr Havlík; Michael Obersteiner; Bertrand Guenet; Daniel Goll; Wei Li; Victoria Naipal; Shushi Peng; Chunjing Qiu; Hanqin Tian; Nicolas Viovy; Chao Ye; Dan Zhu;pmid: 33402687
pmc: PMC7785734
AbstractGrasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands.
IIASA DARE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 194 citations 194 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Embargo end date: 27 Nov 2019Publisher:American Association for the Advancement of Science (AAAS) Trnka, Miroslav; Feng, Song; Semenov, Mikhail A; Olesen, Jørgen E; Kersebaum, Kurt Christian; Rötter, Reimund P; Semerádová, Daniela; Klem, Karel; Huang, Wei; Ruiz-Ramos, Margarita; Hlavinka, Petr; Meitner, Jan; Balek, Jan; Havlík, Petr; Büntgen, Ulf;The risk of severe water scarcity events simultaneously affecting key wheat-producing areas doubles despite CO 2 mitigation efforts.
IIASA DARE arrow_drop_down Göttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Göttingen Research Online PublicationsArticle . 2020License: CC BY NCData sources: Göttingen Research Online Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | ENGAGEEC| ENGAGEFricko, Oliver; Frank, Stefan; Gidden, Matthew; Huppmann, Daniel; Johnson, Nils A.; Kishimoto, Paul Natsuo; Kolp, Peter; Lovat, Francesco; McCollum, David L.; Min, Jihoon; Rao, Shilpa; Riahi, Keywan; Rogner, Holger; van Ruijven, Bas; Vinca, Adriano; Zakeri, Behnam; Augustynczik, Andrey Lessa Derci; Deppermann, Andre; Ermolieva, Tatiana; Gusti, Mykola; Lauri, Pekka; Heyes, Chris; Schoepp, Wolfgang; Klimont, Zbigniew; Havlik, Petr; Krey, Volker;This dataset contains the parameterization of a no-policy baseline scenario of the global 11-regional MESSAGEix-GLOBIOM integrated assessment model. Regions, time periods, commodities, technologies and relations included in this model are described in a separate repository. The dataset relies on the MESSAGEix modeling framework (Huppmann et al. 2019) and can be imported into MESSAGEix via the read_excel() functionality for which a tutorial is available. After the import the scenario can be solved and modified to create new scenarios. Note that the published scenario as included in the ENGAGE global scenarios dataset has been run with a release candidate of version 3.4.0 of MESSAGEix.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 985visibility views 985 download downloads 855 Powered by
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Springer Science and Business Media LLC Funded by:EC | ENGAGEEC| ENGAGEMykola Gusti; Mykola Gusti; Johannes Emmerling; Detlef P. van Vuuren; Detlef P. van Vuuren; Andre Deppermann; Alexander Popp; Christoph Bertram; Ken Oshiro; Keywan Riahi; Keywan Riahi; Yuki Ochi; Mathijs Harmsen; Mathijs Harmsen; Shinichiro Fujimori; Shinichiro Fujimori; Shinichiro Fujimori; Pedro Rochedo; Anique-Marie Cabardos; Florian Humpenöder; Petr Havlik; Bas van Ruijven; Florian Fosse; Volker Krey; Roberto Schaeffer; Tomoko Hasegawa; Tomoko Hasegawa; Jacques Després; Kimon Keramidas; Stefan Frank; Laurent Drouet;Delaying climate mitigation action and allowing a temporary overshoot of temperature targets require large-scale carbon dioxide removal (CDR) in the second half of this century that may induce adverse side effects on land, food and ecosystems. Meanwhile, meeting climate goals without global net-negative emissions inevitably needs early and rapid emission reduction measures, which also brings challenges in the near term. Here we identify the implications for land-use and food systems of scenarios that do not depend on land-based CDR technologies. We find that early climate action has multiple benefits and trade-offs, and avoids the need for drastic (mitigation-induced) shifts in land use in the long term. Further long-term benefits are lower food prices, reduced risk of hunger and lower demand for irrigation water. Simultaneously, however, near-term mitigation pressures in the agriculture, forest and land-use sector and the required land area for energy crops increase, resulting in additional risk of food insecurity.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefPublication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
