- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Wojciech Cieslik; Filip Szwajca; Jedrzej Zawartowski; Katarzyna Pietrzak; Slawomir Rosolski; Kamil Szkarlat; Michal Rutkowski;doi: 10.3390/en14227591
The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7591/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7591/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Polish Scientific Society of Combustion Engines Authors: Wojciech Cieślik; Filip Szwajca; Jacek Golimowski;doi: 10.19206/ce-2020-310
The greenhouse effect and overall climate changes are the main reasons for developing ecological powertrain units dedicated to road vehicles. An electrical drivetrain without using conventional combustion engines fueled by hydrocar-bon fuels is an effective method to significantly reduce CO2 emissions from the fleet. It is particularly vital in 2020 emis-sion regulations aspects, and continuously the number of vehicles increasing. In this paper battery electric drive system of a small size passenger car was analyzed in terms of two different drive modes in cooperation with two recuperative braking modes. The research was carried out with real driving condition test requirements and driving parameters re-cording. Based on data obtained from OBD signals, energy flow and torque distribution have been specified. In results, overall reducing energy consumption has been achieved with ECO mode compared to normal mode. Selection of the driving mode ECO has a positive impact on reducing the state of charge saving more than 5%, taking into account the whole RDC test; greater energy consumption reductions were observed in selected test areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-2020-310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-2020-310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Polish Scientific Society of Combustion Engines Authors: Ireneusz Pielecha; Filip Szwajca; Zbigniew Stępień;doi: 10.19206/ce-167898
The operation of conventional (hydrocarbon) fuels causes certain effects in the internal combustion engine. Despite the satisfactory efficiency of internal combustion engines, their fuel systems, particularly the injectors, are subject to constant fouling. The article analyzes the possibility of reducing the deposit of high-pressure gasoline injectors using the alcohol addition of ethanol and butanol. The study was conducted under the engine and non-engine conditions. Fuel injection timing was analyzed when fueling with different mixtures, and non-engine analyses were conducted to determine changes affecting the injectors. The results indicate the possibility of reducing injector hole coking using ethanol and butanol as a 20% additive to the base fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-167898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-167898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ireneusz Pielecha; Filip Szwajca; Kinga Skobiej;doi: 10.3390/en16227657
This article investigates the impact of loading on the hybrid powertrain of the FCAT-30 model, equipped with a proton-exchange-membrane fuel cell (PEMFC) and a nickel–metal hydride (NiMH) battery. This study involves analyzing structural component performance based on voltage and current measurements of the fuel cell, battery, and powertrain. Tests conducted under different load conditions reveal significant differences in battery current and fuel-cell voltage, highlighting the crucial role of the battery in the powertrain. External loading induces cyclic operation of the fuel cell, generating peak power. The energy balance analysis demonstrates that, under no-load conditions, the vehicle consumes 37.3% of its energy from the fuel cell, with a total energy consumption of 3597 J. Under load, the energy from the battery is significantly utilized, resulting in a constant fuel-cell share of approximately 19%, regardless of the vehicle’s load. This study concludes that the battery predominantly drives the powertrain, with the fuel cell acting as a secondary energy source. These findings provide valuable insights into the power distribution and energy balance in the hybrid powertrain. Using a load driving profile reduced the fuel-cell-stack energy contribution by 6.85% relative to driving without an external load.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Lukasiewicz Research Network - Poznan Technology Institute Authors: Filip Szwajca; Kinga Skobiej; Kamil Wittek;doi: 10.53502/rail-183642
The research presented in this paper focused on the simulation analysis of the pre-chamber neck diameter on in-cylinder processes in a large gas engine. The investigation was conducted using AVL Boost software and the implemented PCSI combustion model. The scope of the analysis included different neck diameters from 17 to 26 mm and variations of the ignition timing in the range of 0 to 40 degrees. Using the narrowest ignition chamber neck resulted in the largest inter-chamber throttling effect. This translated into an increase in the maximum pressure in the cylinder, obtaining more heat release and the heat release rate. Further reduction of the constriction below 17 mm led to a rapid pressure increase in the ignition chamber at the start of combustion above the maximum pressure in the cylinder, for which the indicated constriction value was considered limiting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-183642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-183642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Zbigniew Stępień; Ireneusz Pielecha; Filip Szwajca; Wojciech Cieślik;doi: 10.3390/en15082926
Correct fuel atomization is an important parameter in the process of preparing a combustible mixture. Distortions of the atomization can lead to unfavorable effects in the combustion process. This paper presents an analysis of the fuel atomization characteristics of high-pressure fuel injector tests. Optically tested injectors were previously tested in a 48 h engine test carried out in accordance with the CEC F-113-KC procedure, using alternative fuels with ethanol blends. As a result of engine tests on fuels containing various amounts of ethanol admixture, the injectors became contaminated. The effect of the deposits on the geometric atomization indicators was determined. This paper focuses on analyzing the area of the atomized spray in a constant volume chamber at different parameters, reflecting real operating conditions. We found that the addition of ethanol (20%) increases the observed spray area for all test points. Complementing the quantitative results is a qualitative analysis of fuel atomization for injector tests previously run on varying fuels.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2926/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2926/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Lukasiewicz Research Network - Poznan Technology Institute Authors: Filip Szwajca; Andrew Berger; Robert Spalletta; Ireneusz Pielecha;doi: 10.53502/rail-157516
Modern internal combustion powertrains are the main source of propulsion for on-road and non-road vehicles. However, they are increasingly being replaced by electric or fuel cell-equipped alternative propulsion systems. The article presents a study of fuel cell characteristics operating under both static and dynamic conditions, with a 1.2 kW fuel cell set with a voltage converter and lead-acid batteries. In the conducted tests, the fuel cell stack's maximum efficiency reached 65%. Load tests (static and dynamic) have indicated higher fuel cell efficiencies when using hybrid operation with a DC/DC converter and battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-157516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-157516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Ireneusz Pielecha; Filip Szwajca; Kinga Skobiej;doi: 10.3390/en17040937
Hydrogen-fueled engines require large values of the excess air ratio in order to achieve high thermal efficiency. A low value of this coefficient promotes knocking combustion. This paper analyzes the conditions for the occurrence of knocking combustion in an engine with a turbulent jet ignition (TJI) system with a passive pre-chamber. A single-cylinder engine equipped with a TJI system was running with an air-to-fuel equivalence ratio λ in the range of 1.25–2.00, and the center of combustion (CoC) was regulated in the range of 2–14 deg aTDC (top dead center). Such process conditions made it possible to fully analyze the ascension of knock combustion until its disappearance with the increase in lambda and CoC. Measures of knock in the form of maximum amplitude pressure oscillation (MAPO) and integral modulus of pressure oscillation (IMPO) were used. The absolute values of these indices were pointed out, which can provide the basis for the definition of knock combustion. Based on our own work, the MAPO index > 1 bar was defined, determining the occurrence of knocking (without indicating its quality). In addition, taking into account MAPO, it was concluded that IMPO > 0.13 bar·deg is the quantity responsible for knocking combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Ireneusz Pielecha; Filip Szwajca;doi: 10.3390/en17061324
The use of a two-stage combustion system in a hydrogen-fueled engine is characteristic of modern internal combustion engines. The main problem with hydrogen combustion in such systems is knocking combustion. This paper contains the results of research under knock combustion conditions with a single-cylinder internal combustion engine equipped with a turbulent jet ignition system (TJI). A layout with a passive pre-chamber and a variable value of the excess air ratio range λ = 1.25–2.0 with a constant value of the center of combustion (CoC = 4 deg) after top dead center (TDC) was used. Two indicators of knock combustion were analyzed: maximum oscillation of pressure and the Mahle Knock Index. Analyses were also carried out taking into account the rate of heat release and the amount of heat released. As a result of the investigation, it was found that knock combustion occurs intensively at small values of the air excess ratio. Hydrogen knock combustion disappears for λ = 2.0 and greater. The pressure oscillation index was found to be more applicable, as its limiting value (>1 bar) allows easy diagnosis of knock combustion. The Mahle Knock Index is a quantity that allows interval analysis of the knock. The choice of classes and weighting coefficients requires an iterative operation, as they strictly depend on engine characteristics, load, and knock magnitude.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Adrian Gill; Ireneusz Pielecha; Filip Szwajca;doi: 10.3390/en17194802
This article aims to align its content with current trends in hybrid risk analysis methods while utilizing experimental research. This paper presents a hybrid methodology for analyzing the failure severity of a two-stage hydrogen-powered combustion system and details its implementation. This methodology assumes the use of the original FMESA method (Failure Mode and Effects Severity Analysis) with dedicated tabular scales of the failure severity. Obtaining results under the FMESA using experimental research is intended to reduce epistemic uncertainty, which is an important component of hazard severity or risk models. Its essence is to change the way of obtaining the results of the basic components of known methods such as FMEA/FMECA (Failure Mode and Effect Analysis/Failure Mode, Effects and Criticality Analysis). Experimental research was also used to develop the original failure severity scales for a two-stage hydrogen-fueled combustion system. The article presents a review of the literature on methods for identifying and analyzing hazards in hydrogen systems, the FMESA method with its mathematical model, results in the form of tabular scales of the failure severity, results of selected experimental tests, and quantitative results of a severity analysis of eleven failure modes of a two-stage hydrogen-fueled combustion system for a selected engine operating point.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Wojciech Cieslik; Filip Szwajca; Jedrzej Zawartowski; Katarzyna Pietrzak; Slawomir Rosolski; Kamil Szkarlat; Michal Rutkowski;doi: 10.3390/en14227591
The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7591/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/22/7591/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Polish Scientific Society of Combustion Engines Authors: Wojciech Cieślik; Filip Szwajca; Jacek Golimowski;doi: 10.19206/ce-2020-310
The greenhouse effect and overall climate changes are the main reasons for developing ecological powertrain units dedicated to road vehicles. An electrical drivetrain without using conventional combustion engines fueled by hydrocar-bon fuels is an effective method to significantly reduce CO2 emissions from the fleet. It is particularly vital in 2020 emis-sion regulations aspects, and continuously the number of vehicles increasing. In this paper battery electric drive system of a small size passenger car was analyzed in terms of two different drive modes in cooperation with two recuperative braking modes. The research was carried out with real driving condition test requirements and driving parameters re-cording. Based on data obtained from OBD signals, energy flow and torque distribution have been specified. In results, overall reducing energy consumption has been achieved with ECO mode compared to normal mode. Selection of the driving mode ECO has a positive impact on reducing the state of charge saving more than 5%, taking into account the whole RDC test; greater energy consumption reductions were observed in selected test areas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-2020-310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-2020-310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Polish Scientific Society of Combustion Engines Authors: Ireneusz Pielecha; Filip Szwajca; Zbigniew Stępień;doi: 10.19206/ce-167898
The operation of conventional (hydrocarbon) fuels causes certain effects in the internal combustion engine. Despite the satisfactory efficiency of internal combustion engines, their fuel systems, particularly the injectors, are subject to constant fouling. The article analyzes the possibility of reducing the deposit of high-pressure gasoline injectors using the alcohol addition of ethanol and butanol. The study was conducted under the engine and non-engine conditions. Fuel injection timing was analyzed when fueling with different mixtures, and non-engine analyses were conducted to determine changes affecting the injectors. The results indicate the possibility of reducing injector hole coking using ethanol and butanol as a 20% additive to the base fuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-167898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.19206/ce-167898&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ireneusz Pielecha; Filip Szwajca; Kinga Skobiej;doi: 10.3390/en16227657
This article investigates the impact of loading on the hybrid powertrain of the FCAT-30 model, equipped with a proton-exchange-membrane fuel cell (PEMFC) and a nickel–metal hydride (NiMH) battery. This study involves analyzing structural component performance based on voltage and current measurements of the fuel cell, battery, and powertrain. Tests conducted under different load conditions reveal significant differences in battery current and fuel-cell voltage, highlighting the crucial role of the battery in the powertrain. External loading induces cyclic operation of the fuel cell, generating peak power. The energy balance analysis demonstrates that, under no-load conditions, the vehicle consumes 37.3% of its energy from the fuel cell, with a total energy consumption of 3597 J. Under load, the energy from the battery is significantly utilized, resulting in a constant fuel-cell share of approximately 19%, regardless of the vehicle’s load. This study concludes that the battery predominantly drives the powertrain, with the fuel cell acting as a secondary energy source. These findings provide valuable insights into the power distribution and energy balance in the hybrid powertrain. Using a load driving profile reduced the fuel-cell-stack energy contribution by 6.85% relative to driving without an external load.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16227657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Lukasiewicz Research Network - Poznan Technology Institute Authors: Filip Szwajca; Kinga Skobiej; Kamil Wittek;doi: 10.53502/rail-183642
The research presented in this paper focused on the simulation analysis of the pre-chamber neck diameter on in-cylinder processes in a large gas engine. The investigation was conducted using AVL Boost software and the implemented PCSI combustion model. The scope of the analysis included different neck diameters from 17 to 26 mm and variations of the ignition timing in the range of 0 to 40 degrees. Using the narrowest ignition chamber neck resulted in the largest inter-chamber throttling effect. This translated into an increase in the maximum pressure in the cylinder, obtaining more heat release and the heat release rate. Further reduction of the constriction below 17 mm led to a rapid pressure increase in the ignition chamber at the start of combustion above the maximum pressure in the cylinder, for which the indicated constriction value was considered limiting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-183642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-183642&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Zbigniew Stępień; Ireneusz Pielecha; Filip Szwajca; Wojciech Cieślik;doi: 10.3390/en15082926
Correct fuel atomization is an important parameter in the process of preparing a combustible mixture. Distortions of the atomization can lead to unfavorable effects in the combustion process. This paper presents an analysis of the fuel atomization characteristics of high-pressure fuel injector tests. Optically tested injectors were previously tested in a 48 h engine test carried out in accordance with the CEC F-113-KC procedure, using alternative fuels with ethanol blends. As a result of engine tests on fuels containing various amounts of ethanol admixture, the injectors became contaminated. The effect of the deposits on the geometric atomization indicators was determined. This paper focuses on analyzing the area of the atomized spray in a constant volume chamber at different parameters, reflecting real operating conditions. We found that the addition of ethanol (20%) increases the observed spray area for all test points. Complementing the quantitative results is a qualitative analysis of fuel atomization for injector tests previously run on varying fuels.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2926/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2926/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082926&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Lukasiewicz Research Network - Poznan Technology Institute Authors: Filip Szwajca; Andrew Berger; Robert Spalletta; Ireneusz Pielecha;doi: 10.53502/rail-157516
Modern internal combustion powertrains are the main source of propulsion for on-road and non-road vehicles. However, they are increasingly being replaced by electric or fuel cell-equipped alternative propulsion systems. The article presents a study of fuel cell characteristics operating under both static and dynamic conditions, with a 1.2 kW fuel cell set with a voltage converter and lead-acid batteries. In the conducted tests, the fuel cell stack's maximum efficiency reached 65%. Load tests (static and dynamic) have indicated higher fuel cell efficiencies when using hybrid operation with a DC/DC converter and battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-157516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.53502/rail-157516&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Ireneusz Pielecha; Filip Szwajca; Kinga Skobiej;doi: 10.3390/en17040937
Hydrogen-fueled engines require large values of the excess air ratio in order to achieve high thermal efficiency. A low value of this coefficient promotes knocking combustion. This paper analyzes the conditions for the occurrence of knocking combustion in an engine with a turbulent jet ignition (TJI) system with a passive pre-chamber. A single-cylinder engine equipped with a TJI system was running with an air-to-fuel equivalence ratio λ in the range of 1.25–2.00, and the center of combustion (CoC) was regulated in the range of 2–14 deg aTDC (top dead center). Such process conditions made it possible to fully analyze the ascension of knock combustion until its disappearance with the increase in lambda and CoC. Measures of knock in the form of maximum amplitude pressure oscillation (MAPO) and integral modulus of pressure oscillation (IMPO) were used. The absolute values of these indices were pointed out, which can provide the basis for the definition of knock combustion. Based on our own work, the MAPO index > 1 bar was defined, determining the occurrence of knocking (without indicating its quality). In addition, taking into account MAPO, it was concluded that IMPO > 0.13 bar·deg is the quantity responsible for knocking combustion.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040937&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Ireneusz Pielecha; Filip Szwajca;doi: 10.3390/en17061324
The use of a two-stage combustion system in a hydrogen-fueled engine is characteristic of modern internal combustion engines. The main problem with hydrogen combustion in such systems is knocking combustion. This paper contains the results of research under knock combustion conditions with a single-cylinder internal combustion engine equipped with a turbulent jet ignition system (TJI). A layout with a passive pre-chamber and a variable value of the excess air ratio range λ = 1.25–2.0 with a constant value of the center of combustion (CoC = 4 deg) after top dead center (TDC) was used. Two indicators of knock combustion were analyzed: maximum oscillation of pressure and the Mahle Knock Index. Analyses were also carried out taking into account the rate of heat release and the amount of heat released. As a result of the investigation, it was found that knock combustion occurs intensively at small values of the air excess ratio. Hydrogen knock combustion disappears for λ = 2.0 and greater. The pressure oscillation index was found to be more applicable, as its limiting value (>1 bar) allows easy diagnosis of knock combustion. The Mahle Knock Index is a quantity that allows interval analysis of the knock. The choice of classes and weighting coefficients requires an iterative operation, as they strictly depend on engine characteristics, load, and knock magnitude.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Adrian Gill; Ireneusz Pielecha; Filip Szwajca;doi: 10.3390/en17194802
This article aims to align its content with current trends in hybrid risk analysis methods while utilizing experimental research. This paper presents a hybrid methodology for analyzing the failure severity of a two-stage hydrogen-powered combustion system and details its implementation. This methodology assumes the use of the original FMESA method (Failure Mode and Effects Severity Analysis) with dedicated tabular scales of the failure severity. Obtaining results under the FMESA using experimental research is intended to reduce epistemic uncertainty, which is an important component of hazard severity or risk models. Its essence is to change the way of obtaining the results of the basic components of known methods such as FMEA/FMECA (Failure Mode and Effect Analysis/Failure Mode, Effects and Criticality Analysis). Experimental research was also used to develop the original failure severity scales for a two-stage hydrogen-fueled combustion system. The article presents a review of the literature on methods for identifying and analyzing hazards in hydrogen systems, the FMESA method with its mathematical model, results in the form of tabular scales of the failure severity, results of selected experimental tests, and quantitative results of a severity analysis of eleven failure modes of a two-stage hydrogen-fueled combustion system for a selected engine operating point.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu