- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Funder
Country
Language
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Authors: Merotto L; Fanciulli C; Dondè R; De Iuliis S;handle: 20.500.14243/269866
The recent advances in miniaturized mechanical devices open exciting new opportunities for combustion, especially in the field of micro power generation, allowing the development of power-supply devices with high specific energy. The development of a device based on a catalytic combustor coupled with thermoelectric modules is particularly attracting for combustion stability and safety. Furthermore, when implemented in micro-meso scale devices, catalytic combustion allows fully utilization of the high energy densities of hydrocarbon fuels, but at notably lower operating temperatures than those typical of traditional combustion. These conditions are more suitable for coupling with conventional thermoelectric modules, preventing their degradation. In this work a novel catalytic meso-scale combustor fuelled with propane/air mixture has been coupled with two conventional thermoelectric modules. The wafer-like combustor is filled up with commercially available catalytic pellets of alumina with Platinum (1% weight). In order to calibrate the operating conditions, the analysis of the temperature values and distribution across the combustor surfaces have been carried out. Characterization of exhaust gases concentration and of pellet aging were performed in order to investigate combustor properties. The results of the combustor behavior characterization guided the coupling of the combustor with commercially available thermoelectric modules using at the cold side a water cooled heat exchanger. The system obtained has been characterized in different operating conditions measuring the delivered electric power in different operating conditions. Efficiency estimation proves that the system is suitable for small portable power generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionCremona A; Vassallo E; Alves E; Causa F; De Iuliis S; Donde R; Giacomi G; Gervasini G; Granucci G; Iafrati M; Maddaluno G; Mateus R; Minelli D; Mellera V; Nardone A; Pedroni M; Ricci D; Rigato V; Rispoli N; Uccello A;handle: 20.500.14243/342879
The use of tin (Sn) as a liquid metal for plasma facing components has been recently proposed as a solution to the high heat load issue on the divertor target plates in nuclear fusion reactors. Due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact, tin is a good candidate as plasma facing component. However its high atomic number poses concerns about plasma contamination. In this paper two fundamental aspects have been investigated: deuterium retention and erosion fluxes from the Sn surface towards the plasma. The samples were exposed to plasma inside the linear machine GyM in magnetic cusp configuration. This setup permits to expose free liquid specimens without the need for the Capillary Porous System. Moreover it permits to lower the magnetic field in order to increase Sn Larmor radius and consequently limit Sn re-deposition in erosion experiments. Ex-situ analyses by ion beam diagnostics on solid samples exposed to deuterium plasma have proved that the amount of retained atomic deuterium is very low, approximately 0.18 at% estimated by Nuclear Reaction Analysis and 0.25 at% estimated by Elastic Recoil Detection Analysis. In the framework of erosion studies, the spectroscopic parameter S/XB was evaluated in Ar plasma for the SnI line at 380.1 nm by Optical Emission Spectroscopy and mass loss measurements in the 5-11 eV Te range, at a density ne ~ 1.5×1011 cm-3. An average value of 150 ± 23 was obtained.
IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered by
more_vert IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Fanciulli C; Abedi H; Merotto L; Donde R; De Iuliis S; Passaretti F;handle: 20.500.14243/344438
In recent years, the portable technology is receiving a great interest and significant improvement due to the progresses in electronic technology development and energy storage solutions. The decrease in power requirements for working energy systems, due to the increased efficiency and to the reduction in components size, opens the access to new solutions for power supplying. In particular, alternative backup systems for battery charging or replacement could be designed taking advantage of unconventional technologies. It is the case of small photovoltaic portable panels or fuel cells technology: in these solutions different sources are used to produce limited electrical powers required to keep devices on. In this paper, a thermoelectric solution for the power generation has been considered: the generator has been designed and assembled starting from a catalytic combustor. Catalytic combustion allows safe control of the processes, and the choice of a hydrocarbon fuel ensures the power availability and a fast recharge. The size of the system is set to fit a volume close to the one of AA batteries. The electrical power output obtained is close to 1 W with a cold side temperature below 40 °C. The limited values of these physical parameters allow obtaining a portable and safe device. The generator has been fully characterized in different ranges of fuel flow rates and the performances have been thoroughly analysed for processes optimization and efficiency improvement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionRiva G; Tolias P; Ratynskaia S; Daminelli G; Donde R; De Angeli M; Vassallo E; Pedroni M;handle: 20.500.14243/341056
The first experimental determination of the pull-off force for tungsten dust adhered to tungsten surfaces is reported. Dust deposition is conducted with gas dynamics methods in a manner that mimics sticking as it occurs in the tokamak environment. Adhesion measurements are carried out with the electrostatic detachment method. The adhesion strength is systematically characterized for spherical micron dust of different sizes and planar surfaces of varying roughness. The experimental pull-off force is nearly two orders of magnitude smaller than the predictions of contact mechanics models, but in strong agreement with the Van der Waals formula. A theoretical interpretation is provided that invokes the effects of nanometer-scale surface roughness for stiff materials such as tungsten.
IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Authors: Merotto L; Fanciulli C; Dondè R; De Iuliis S;handle: 20.500.14243/269866
The recent advances in miniaturized mechanical devices open exciting new opportunities for combustion, especially in the field of micro power generation, allowing the development of power-supply devices with high specific energy. The development of a device based on a catalytic combustor coupled with thermoelectric modules is particularly attracting for combustion stability and safety. Furthermore, when implemented in micro-meso scale devices, catalytic combustion allows fully utilization of the high energy densities of hydrocarbon fuels, but at notably lower operating temperatures than those typical of traditional combustion. These conditions are more suitable for coupling with conventional thermoelectric modules, preventing their degradation. In this work a novel catalytic meso-scale combustor fuelled with propane/air mixture has been coupled with two conventional thermoelectric modules. The wafer-like combustor is filled up with commercially available catalytic pellets of alumina with Platinum (1% weight). In order to calibrate the operating conditions, the analysis of the temperature values and distribution across the combustor surfaces have been carried out. Characterization of exhaust gases concentration and of pellet aging were performed in order to investigate combustor properties. The results of the combustor behavior characterization guided the coupling of the combustor with commercially available thermoelectric modules using at the cold side a water cooled heat exchanger. The system obtained has been characterized in different operating conditions measuring the delivered electric power in different operating conditions. Efficiency estimation proves that the system is suitable for small portable power generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionCremona A; Vassallo E; Alves E; Causa F; De Iuliis S; Donde R; Giacomi G; Gervasini G; Granucci G; Iafrati M; Maddaluno G; Mateus R; Minelli D; Mellera V; Nardone A; Pedroni M; Ricci D; Rigato V; Rispoli N; Uccello A;handle: 20.500.14243/342879
The use of tin (Sn) as a liquid metal for plasma facing components has been recently proposed as a solution to the high heat load issue on the divertor target plates in nuclear fusion reactors. Due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact, tin is a good candidate as plasma facing component. However its high atomic number poses concerns about plasma contamination. In this paper two fundamental aspects have been investigated: deuterium retention and erosion fluxes from the Sn surface towards the plasma. The samples were exposed to plasma inside the linear machine GyM in magnetic cusp configuration. This setup permits to expose free liquid specimens without the need for the Capillary Porous System. Moreover it permits to lower the magnetic field in order to increase Sn Larmor radius and consequently limit Sn re-deposition in erosion experiments. Ex-situ analyses by ion beam diagnostics on solid samples exposed to deuterium plasma have proved that the amount of retained atomic deuterium is very low, approximately 0.18 at% estimated by Nuclear Reaction Analysis and 0.25 at% estimated by Elastic Recoil Detection Analysis. In the framework of erosion studies, the spectroscopic parameter S/XB was evaluated in Ar plasma for the SnI line at 380.1 nm by Optical Emission Spectroscopy and mass loss measurements in the 5-11 eV Te range, at a density ne ~ 1.5×1011 cm-3. An average value of 150 ± 23 was obtained.
IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 1 Powered by
more_vert IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Fanciulli C; Abedi H; Merotto L; Donde R; De Iuliis S; Passaretti F;handle: 20.500.14243/344438
In recent years, the portable technology is receiving a great interest and significant improvement due to the progresses in electronic technology development and energy storage solutions. The decrease in power requirements for working energy systems, due to the increased efficiency and to the reduction in components size, opens the access to new solutions for power supplying. In particular, alternative backup systems for battery charging or replacement could be designed taking advantage of unconventional technologies. It is the case of small photovoltaic portable panels or fuel cells technology: in these solutions different sources are used to produce limited electrical powers required to keep devices on. In this paper, a thermoelectric solution for the power generation has been considered: the generator has been designed and assembled starting from a catalytic combustor. Catalytic combustion allows safe control of the processes, and the choice of a hydrocarbon fuel ensures the power availability and a fast recharge. The size of the system is set to fit a volume close to the one of AA batteries. The electrical power output obtained is close to 1 W with a cold side temperature below 40 °C. The limited values of these physical parameters allow obtaining a portable and safe device. The generator has been fully characterized in different ranges of fuel flow rates and the performances have been thoroughly analysed for processes optimization and efficiency improvement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionRiva G; Tolias P; Ratynskaia S; Daminelli G; Donde R; De Angeli M; Vassallo E; Pedroni M;handle: 20.500.14243/341056
The first experimental determination of the pull-off force for tungsten dust adhered to tungsten surfaces is reported. Dust deposition is conducted with gas dynamics methods in a manner that mimics sticking as it occurs in the tokamak environment. Adhesion measurements are carried out with the electrostatic detachment method. The adhesion strength is systematically characterized for spherical micron dust of different sizes and planar surfaces of varying roughness. The experimental pull-off force is nearly two orders of magnitude smaller than the predictions of contact mechanics models, but in strong agreement with the Van der Waals formula. A theoretical interpretation is provided that invokes the effects of nanometer-scale surface roughness for stiff materials such as tungsten.
IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2016License: CC BY NC NDData sources: BASE (Open Access Aggregator)Nuclear Materials and EnergyArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
