- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV Authors: Kim, Hak; Croke, Barry; Jakeman, Anthony; Chiew, F.H.S.;handle: 1885/60906
The aim is to investigate the consistency or variability of catchment response over time and space and evaluate the predictive error caused by the impacts of climate variability on streamflow. For this purpose, both data- and top-down model-based analyses of the dynamic relation between rainfall and runoff for selected sub-catchments have been undertaken. Data analysis techniques (e.g. trend analysis, deconvolution and baseflow filtering) were used to assess the temporal and spatial variation in the hydrologic response characteristics for each site. The lumped conceptual rainfall-runoff model IHACRES CMD (Catchment Moisture Deficit) version is applied to the sub-catchments to assess the adequacy of the model response in representing the impact of weather patterns on streamflow. Several performance criteria have been used to evaluate the performance of the model in each calibration period using a multi-criteria approach. The IHACRES-3S (3 Storage) model is applied to assess low flow behaviour and capture the timing in the switch between baseflow and no flow periods. Rainfall-runoff model performance characteristics of each sub-catchment are quite related to their incident rainfall regime. Sub-catchments which are located in a lower rainfall regime show poor to average model performance. The reduction in performance in R^2 is due to the poor fitting to the peaks for both large and small streamflow events, with the model underestimating the highest flow peaks, and overestimating smaller peaks. Further work will be needed to assess observed data reliability and improve model performance in order to separate the impacts of climate variations and land use change on hydrological response. An appropriate model structure having a variable partitioning between quick and slow flow components is under consideration and techniques are being used to identify problematic periods and events with high error in the observational data.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/60906Data sources: Bielefeld Academic Search Engine (BASE)Mathematics and Computers in SimulationArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matcom.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/60906Data sources: Bielefeld Academic Search Engine (BASE)Mathematics and Computers in SimulationArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matcom.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:American Meteorological Society Zhang , Yongqiang; Leuning, Ray; Chiew, F.H.S.; Wang, Enli; Zhang, Lu; Changming, Liu; Sun, Fubao; Peel, Murray C; shen, Yanjun; Jung, Martin;handle: 1885/52339
AbstractSatellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in “wet” regions where energy supply limits evaporation. However, decadal trends in evaporation estimated from water balances of 110 wet catchments do not match trends in evaporation estimated using three alternative methods: 1) , a model-tree ensemble approach that uses statistical relationships between E measured across the global network of flux stations, meteorological drivers, and remotely sensed fraction of absorbed photosynthetically active radiation; 2) , a Budyko-style hydrometeorological model; and 3) , the Penman–Monteith energy-balance equation coupled with a simple biophysical model for surface conductance. Key model inputs for the estimation of and are remotely sensed radiation and gridded meteorological fields and it is concluded that these data are, as yet, not sufficiently accurate to explain trends in E for wet regions. This provides a significant challenge for satellite-based energy-balance methods. Trends in for 87 “dry” catchments are strongly correlated to trends in precipitation (R2 = 0.85). These trends were best captured by , which explicitly includes precipitation and available energy as model inputs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jhm-d-11-012.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jhm-d-11-012.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Ian P. Prosser; Francis H. S. Chiew; Mark Stafford Smith;doi: 10.3390/w13182504
Climate change is threatening water security in water-scarce regions across the world, challenging water management policy in terms of how best to adapt. Transformative new approaches have been proposed, but management policies remain largely the same in many instances, and there are claims that good current management practice is well adapted. This paper takes the case of the Murray–Darling Basin, Australia, where management policies are highly sophisticated and have been through a recent transformation in order to critically review how well adapted the basin’s management is to climate change. This paper synthesizes published data, recent literature, and water plans in order to evaluate the outcomes of water management policy. It identifies several limitations and inequities that could emerge in the context of climate change and, through synthesis of the broader climate adaptation literature, proposes solutions that can be implemented when basin management is formally reviewed in 2026.
Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/18/2504/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13182504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/18/2504/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13182504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Francis H. S. Chiew; Guobin Fu; David A. Post; Yongqiang Zhang; Biao Wang; Neil R. Viney;doi: 10.3390/w10091161
The potential cumulative impact of coal mining and coal seam gas extraction on water resources and water-dependent assets from proposed developments in eastern Australia have been recently assessed through a Bioregional Assessment Programme. This study investigates the sensitivity of the Bioregional Assessment results to climate change and hydroclimate variability, using the Gloucester sub-region as an example. The results indicate that the impact of climate change on streamflow under medium and high future projections can be greater than the impact from coal mining development, particularly where the proposed development is small. The differences in the modelled impact of coal resource development relative to the baseline under different plausible climate futures are relatively small for the Gloucester sub-region but can be significant in regions with large proposed development. The sequencing of hydroclimate time series, particularly when the mine footprint is large, significantly influences the modelled maximum coal resource development impact. The maximum impact on volumetric and high flow variables will be higher if rainfall is high in the period when the mine footprint is largest, and vice-versa for low flow variables. The results suggest that detailed analysis of coal resource development impact should take into account climate change and hydroclimate variability.
Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/9/1161/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10091161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/9/1161/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10091161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Jin Teng; Francis H. S. Chiew; Hongxing Zheng; Ang Yang; David J. Penton; Catherine Ticehurst; Steve Marvanek; Jai Vaze; Fathaha Khanam; David A. Post; Carmel Pollino;Abstract Predicting floodplain inundation under a changing climate is essential for adaptive management of water resources and ecosystems worldwide. This study presents a framework combining satellite observations and hydrological modeling to explore changes in floodplain inundation. We examine variability, trends, and frequency of inundation across the Murray–Darling Basin (MDB), Australia’s largest river system, over the past 35 years (1988–2022). Our analysis shows that annual maximum 30-day runoff is a primary hydrological factor influencing floodplain inundation. Using this metric as a proxy, we found that floodplain inundation, if driven solely by hydroclimate conditions, would have been more frequent in the recent decades (1988–2022) compared to the century-long baseline (1900–2022), especially in the southern basin. Despite projected declines in water availability under climate change in MDB, floodplain inundation appears to be less affected. The projected changes in floodplain inundation vary by region, influenced by local hydroclimate, human intervention, and the balance between projected more intense extreme rainfall and drier catchment conditions. This framework provides valuable insights into water resource planning and environmental management, with potential applications beyond the MDB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-93670-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-93670-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 BelgiumPublisher:Springer Science and Business Media LLC Funded by:EC | DRY-2-DRY, ARC | Future Fellowships - Gran...EC| DRY-2-DRY ,ARC| Future Fellowships - Grant ID: FT110100602Lei Cheng; Yongqiang Zhang; Diego G. Miralles; Ying-Ping Wang; Longhui Li; Lu Zhang; Josep G. Canadell; Jason Beringer; Shilong Piao; Shilong Piao; Francis H. S. Chiew;AbstractQuantifying the responses of the coupled carbon and water cycles to current global warming and rising atmospheric CO2 concentration is crucial for predicting and adapting to climate changes. Here we show that terrestrial carbon uptake (i.e. gross primary production) increased significantly from 1982 to 2011 using a combination of ground-based and remotely sensed land and atmospheric observations. Importantly, we find that the terrestrial carbon uptake increase is not accompanied by a proportional increase in water use (i.e. evapotranspiration) but is largely (about 90%) driven by increased carbon uptake per unit of water use, i.e. water use efficiency. The increased water use efficiency is positively related to rising CO2 concentration and increased canopy leaf area index, and negatively influenced by increased vapour pressure deficits. Our findings suggest that rising atmospheric CO2 concentration has caused a shift in terrestrial water economics of carbon uptake.
Nature Communication... arrow_drop_down Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-00114-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Communication... arrow_drop_down Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-00114-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Glen R. Walker; Russell S. Crosbie; Francis H. S. Chiew; Luk Peeters; Rick Evans;doi: 10.3390/w13243588
The trend to a hotter and drier climate, with more extended droughts, has been observed in recent decades in southern Australia and is projected to continue under climate change. This paper reviews studies on the projected impacts of climate change on groundwater and associated environmental assets in southern Australia, and describes groundwater planning frameworks and management responses. High-risk areas are spatially patchy due to highly saline groundwater or low-transmissivity aquifers. The proportional reduction in rainfall is amplified in the groundwater recharge and some groundwater discharge fluxes. This leads to issues of deteriorating groundwater-dependent ecosystems, streamflow depletion, reduced submarine discharge, groundwater inundation and intrusion in coastal regions and reduced groundwater supply for extraction. Recent water reforms in Australia support the mitigation of these impacts, but groundwater adaptation is still at its infancy. Risk management is being incorporated in regional water and groundwater management plans to support a shift to a more sustainable level of use and more climate-resilient water resources in affected areas. The emerging strategies of groundwater trade and managed aquifer recharge are described, as is the need for a national water-focused climate change planning process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13243588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13243588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Francis H. S. Chiew; Hongxing Zheng; Nicholas J. Potter; Stephen P. Charles; Marcus Thatcher; Fei Ji; Jozef Syktus; David E. Robertson; David A. Post;doi: 10.3390/w14172730
The paper compares future streamflow projections for 133 catchments in the Murray–Darling Basin simulated by a hydrological model with future rainfall inputs generated from different methods informed by climate change signals from different global climate models and dynamically downscaled datasets. The results show a large range in future projections of hydrological metrics, mainly because of the uncertainty in rainfall projections within and across the different climate projection datasets. Dynamical downscaling provides simulations at higher spatial resolutions, but projections from different datasets can be very different. The large number of approaches help provide a robust understanding of future hydroclimate conditions, but they can also be confusing. For water resources management, it may be prudent to communicate just a couple of future scenarios for impact assessments with stakeholders and policymakers, particularly when practically all of the projections indicate a drier future in the Basin. The median projection for 2046–2075 relative to 1981–2010 for a high global warming scenario is a 20% decline in streamflow across the Basin. More detailed assessments of the impact and adaptation options could then use all of the available datasets to represent the full modelled range of plausible futures.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Springer Science and Business Media LLC Brett A. Bryan; Rrebecca McCallum; Heinz Schandl; Steve Hatfield-Dodds; Rod McCrea; Francis H. S. Chiew; Martin Nolan; Ian P. Prosser; Ian P. Prosser; Tim Baynes; David Newth; Philip D. Adams; Alex Wonhas; Thomas S. Brinsmead; Lisa McKellar; Tom Harwood; Mike Grundy; Paul Graham;pmid: 26536956
Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth's ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Francis H.S. Chiew; Hongxing Zheng; Nicholas J. Potter;doi: 10.3390/w10101319
This paper investigates the prediction of different streamflow characteristics in ungauged catchments and under climate change, with three rainfall-runoff models calibrated against three different objective criteria, using a large data set from 780 catchments across Australia. The results indicate that medium and high flows are relatively easier to predict, suggesting that using a single unique set of parameter values from model calibration against an objective criterion like the Nash–Sutcliffe efficiency is generally adequate and desirable to provide a consistent simulation and interpretation of daily streamflow series and the different medium and high flow characteristics. However, the low flow characteristics are considerably more difficult to predict and will require careful modelling consideration to specifically target the low flow characteristic of interest. The modelling results also show that different rainfall-runoff models and different calibration approaches can give significantly different predictions of climate change impact on streamflow characteristics, particularly for characteristics beyond the long-term averages. Predicting the hydrological impact from climate change, therefore, requires careful modelling consideration and calibration against appropriate objective criteria that specifically target the streamflow characteristic that is being assessed.
Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/10/1319/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10101319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/10/1319/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10101319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Elsevier BV Authors: Kim, Hak; Croke, Barry; Jakeman, Anthony; Chiew, F.H.S.;handle: 1885/60906
The aim is to investigate the consistency or variability of catchment response over time and space and evaluate the predictive error caused by the impacts of climate variability on streamflow. For this purpose, both data- and top-down model-based analyses of the dynamic relation between rainfall and runoff for selected sub-catchments have been undertaken. Data analysis techniques (e.g. trend analysis, deconvolution and baseflow filtering) were used to assess the temporal and spatial variation in the hydrologic response characteristics for each site. The lumped conceptual rainfall-runoff model IHACRES CMD (Catchment Moisture Deficit) version is applied to the sub-catchments to assess the adequacy of the model response in representing the impact of weather patterns on streamflow. Several performance criteria have been used to evaluate the performance of the model in each calibration period using a multi-criteria approach. The IHACRES-3S (3 Storage) model is applied to assess low flow behaviour and capture the timing in the switch between baseflow and no flow periods. Rainfall-runoff model performance characteristics of each sub-catchment are quite related to their incident rainfall regime. Sub-catchments which are located in a lower rainfall regime show poor to average model performance. The reduction in performance in R^2 is due to the poor fitting to the peaks for both large and small streamflow events, with the model underestimating the highest flow peaks, and overestimating smaller peaks. Further work will be needed to assess observed data reliability and improve model performance in order to separate the impacts of climate variations and land use change on hydrological response. An appropriate model structure having a variable partitioning between quick and slow flow components is under consideration and techniques are being used to identify problematic periods and events with high error in the observational data.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/60906Data sources: Bielefeld Academic Search Engine (BASE)Mathematics and Computers in SimulationArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matcom.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/60906Data sources: Bielefeld Academic Search Engine (BASE)Mathematics and Computers in SimulationArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.matcom.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:American Meteorological Society Zhang , Yongqiang; Leuning, Ray; Chiew, F.H.S.; Wang, Enli; Zhang, Lu; Changming, Liu; Sun, Fubao; Peel, Murray C; shen, Yanjun; Jung, Martin;handle: 1885/52339
AbstractSatellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to 2006, suggesting that positive trends in evaporation may occur in “wet” regions where energy supply limits evaporation. However, decadal trends in evaporation estimated from water balances of 110 wet catchments do not match trends in evaporation estimated using three alternative methods: 1) , a model-tree ensemble approach that uses statistical relationships between E measured across the global network of flux stations, meteorological drivers, and remotely sensed fraction of absorbed photosynthetically active radiation; 2) , a Budyko-style hydrometeorological model; and 3) , the Penman–Monteith energy-balance equation coupled with a simple biophysical model for surface conductance. Key model inputs for the estimation of and are remotely sensed radiation and gridded meteorological fields and it is concluded that these data are, as yet, not sufficiently accurate to explain trends in E for wet regions. This provides a significant challenge for satellite-based energy-balance methods. Trends in for 87 “dry” catchments are strongly correlated to trends in precipitation (R2 = 0.85). These trends were best captured by , which explicitly includes precipitation and available energy as model inputs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jhm-d-11-012.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1175/jhm-d-11-012.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Ian P. Prosser; Francis H. S. Chiew; Mark Stafford Smith;doi: 10.3390/w13182504
Climate change is threatening water security in water-scarce regions across the world, challenging water management policy in terms of how best to adapt. Transformative new approaches have been proposed, but management policies remain largely the same in many instances, and there are claims that good current management practice is well adapted. This paper takes the case of the Murray–Darling Basin, Australia, where management policies are highly sophisticated and have been through a recent transformation in order to critically review how well adapted the basin’s management is to climate change. This paper synthesizes published data, recent literature, and water plans in order to evaluate the outcomes of water management policy. It identifies several limitations and inequities that could emerge in the context of climate change and, through synthesis of the broader climate adaptation literature, proposes solutions that can be implemented when basin management is formally reviewed in 2026.
Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/18/2504/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13182504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/18/2504/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13182504&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Francis H. S. Chiew; Guobin Fu; David A. Post; Yongqiang Zhang; Biao Wang; Neil R. Viney;doi: 10.3390/w10091161
The potential cumulative impact of coal mining and coal seam gas extraction on water resources and water-dependent assets from proposed developments in eastern Australia have been recently assessed through a Bioregional Assessment Programme. This study investigates the sensitivity of the Bioregional Assessment results to climate change and hydroclimate variability, using the Gloucester sub-region as an example. The results indicate that the impact of climate change on streamflow under medium and high future projections can be greater than the impact from coal mining development, particularly where the proposed development is small. The differences in the modelled impact of coal resource development relative to the baseline under different plausible climate futures are relatively small for the Gloucester sub-region but can be significant in regions with large proposed development. The sequencing of hydroclimate time series, particularly when the mine footprint is large, significantly influences the modelled maximum coal resource development impact. The maximum impact on volumetric and high flow variables will be higher if rainfall is high in the period when the mine footprint is largest, and vice-versa for low flow variables. The results suggest that detailed analysis of coal resource development impact should take into account climate change and hydroclimate variability.
Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/9/1161/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10091161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/9/1161/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10091161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Jin Teng; Francis H. S. Chiew; Hongxing Zheng; Ang Yang; David J. Penton; Catherine Ticehurst; Steve Marvanek; Jai Vaze; Fathaha Khanam; David A. Post; Carmel Pollino;Abstract Predicting floodplain inundation under a changing climate is essential for adaptive management of water resources and ecosystems worldwide. This study presents a framework combining satellite observations and hydrological modeling to explore changes in floodplain inundation. We examine variability, trends, and frequency of inundation across the Murray–Darling Basin (MDB), Australia’s largest river system, over the past 35 years (1988–2022). Our analysis shows that annual maximum 30-day runoff is a primary hydrological factor influencing floodplain inundation. Using this metric as a proxy, we found that floodplain inundation, if driven solely by hydroclimate conditions, would have been more frequent in the recent decades (1988–2022) compared to the century-long baseline (1900–2022), especially in the southern basin. Despite projected declines in water availability under climate change in MDB, floodplain inundation appears to be less affected. The projected changes in floodplain inundation vary by region, influenced by local hydroclimate, human intervention, and the balance between projected more intense extreme rainfall and drier catchment conditions. This framework provides valuable insights into water resource planning and environmental management, with potential applications beyond the MDB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-93670-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-025-93670-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 BelgiumPublisher:Springer Science and Business Media LLC Funded by:EC | DRY-2-DRY, ARC | Future Fellowships - Gran...EC| DRY-2-DRY ,ARC| Future Fellowships - Grant ID: FT110100602Lei Cheng; Yongqiang Zhang; Diego G. Miralles; Ying-Ping Wang; Longhui Li; Lu Zhang; Josep G. Canadell; Jason Beringer; Shilong Piao; Shilong Piao; Francis H. S. Chiew;AbstractQuantifying the responses of the coupled carbon and water cycles to current global warming and rising atmospheric CO2 concentration is crucial for predicting and adapting to climate changes. Here we show that terrestrial carbon uptake (i.e. gross primary production) increased significantly from 1982 to 2011 using a combination of ground-based and remotely sensed land and atmospheric observations. Importantly, we find that the terrestrial carbon uptake increase is not accompanied by a proportional increase in water use (i.e. evapotranspiration) but is largely (about 90%) driven by increased carbon uptake per unit of water use, i.e. water use efficiency. The increased water use efficiency is positively related to rising CO2 concentration and increased canopy leaf area index, and negatively influenced by increased vapour pressure deficits. Our findings suggest that rising atmospheric CO2 concentration has caused a shift in terrestrial water economics of carbon uptake.
Nature Communication... arrow_drop_down Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-00114-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Communication... arrow_drop_down Ghent University Academic BibliographyArticle . 2017Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-017-00114-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Glen R. Walker; Russell S. Crosbie; Francis H. S. Chiew; Luk Peeters; Rick Evans;doi: 10.3390/w13243588
The trend to a hotter and drier climate, with more extended droughts, has been observed in recent decades in southern Australia and is projected to continue under climate change. This paper reviews studies on the projected impacts of climate change on groundwater and associated environmental assets in southern Australia, and describes groundwater planning frameworks and management responses. High-risk areas are spatially patchy due to highly saline groundwater or low-transmissivity aquifers. The proportional reduction in rainfall is amplified in the groundwater recharge and some groundwater discharge fluxes. This leads to issues of deteriorating groundwater-dependent ecosystems, streamflow depletion, reduced submarine discharge, groundwater inundation and intrusion in coastal regions and reduced groundwater supply for extraction. Recent water reforms in Australia support the mitigation of these impacts, but groundwater adaptation is still at its infancy. Risk management is being incorporated in regional water and groundwater management plans to support a shift to a more sustainable level of use and more climate-resilient water resources in affected areas. The emerging strategies of groundwater trade and managed aquifer recharge are described, as is the need for a national water-focused climate change planning process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13243588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13243588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Francis H. S. Chiew; Hongxing Zheng; Nicholas J. Potter; Stephen P. Charles; Marcus Thatcher; Fei Ji; Jozef Syktus; David E. Robertson; David A. Post;doi: 10.3390/w14172730
The paper compares future streamflow projections for 133 catchments in the Murray–Darling Basin simulated by a hydrological model with future rainfall inputs generated from different methods informed by climate change signals from different global climate models and dynamically downscaled datasets. The results show a large range in future projections of hydrological metrics, mainly because of the uncertainty in rainfall projections within and across the different climate projection datasets. Dynamical downscaling provides simulations at higher spatial resolutions, but projections from different datasets can be very different. The large number of approaches help provide a robust understanding of future hydroclimate conditions, but they can also be confusing. For water resources management, it may be prudent to communicate just a couple of future scenarios for impact assessments with stakeholders and policymakers, particularly when practically all of the projections indicate a drier future in the Basin. The median projection for 2046–2075 relative to 1981–2010 for a high global warming scenario is a 20% decline in streamflow across the Basin. More detailed assessments of the impact and adaptation options could then use all of the available datasets to represent the full modelled range of plausible futures.
Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4441/14/17/2730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w14172730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Springer Science and Business Media LLC Brett A. Bryan; Rrebecca McCallum; Heinz Schandl; Steve Hatfield-Dodds; Rod McCrea; Francis H. S. Chiew; Martin Nolan; Ian P. Prosser; Ian P. Prosser; Tim Baynes; David Newth; Philip D. Adams; Alex Wonhas; Thomas S. Brinsmead; Lisa McKellar; Tom Harwood; Mike Grundy; Paul Graham;pmid: 26536956
Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth's ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature19414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Francis H.S. Chiew; Hongxing Zheng; Nicholas J. Potter;doi: 10.3390/w10101319
This paper investigates the prediction of different streamflow characteristics in ungauged catchments and under climate change, with three rainfall-runoff models calibrated against three different objective criteria, using a large data set from 780 catchments across Australia. The results indicate that medium and high flows are relatively easier to predict, suggesting that using a single unique set of parameter values from model calibration against an objective criterion like the Nash–Sutcliffe efficiency is generally adequate and desirable to provide a consistent simulation and interpretation of daily streamflow series and the different medium and high flow characteristics. However, the low flow characteristics are considerably more difficult to predict and will require careful modelling consideration to specifically target the low flow characteristic of interest. The modelling results also show that different rainfall-runoff models and different calibration approaches can give significantly different predictions of climate change impact on streamflow characteristics, particularly for characteristics beyond the long-term averages. Predicting the hydrological impact from climate change, therefore, requires careful modelling consideration and calibration against appropriate objective criteria that specifically target the streamflow characteristic that is being assessed.
Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/10/1319/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10101319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2073-4441/10/10/1319/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w10101319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu