- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors:Yujie Fan;
Yujie Fan
Yujie Fan in OpenAIREUrsel Hornung;
Nicolaus Dahmen;Ursel Hornung
Ursel Hornung in OpenAIREKITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2022.106570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2022.106570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Authors: Sascha Riede;Ursel Hornung;
Ursel Hornung
Ursel Hornung in OpenAIREAndrea Kruse;
Andrea Kruse; +2 AuthorsAndrea Kruse
Andrea Kruse in OpenAIRESascha Riede;Ursel Hornung;
Ursel Hornung
Ursel Hornung in OpenAIREAndrea Kruse;
Andrea Kruse; Wolter Prins;Andrea Kruse
Andrea Kruse in OpenAIREDiego López Barreiro;
Diego López Barreiro
Diego López Barreiro in OpenAIREAbstract The microalgae species Nannochloropsis gaditana (marine) and Scenedesmus almeriensis (freshwater) were subjected to hydrothermal liquefaction (HTL) at 350 °C in small microautoclaves for 15 min to study the separation of the aqueous and biocrude oil products, either by gravity or assisted by an organic solvent (dichloromethane). The vast majority of the research available for microalgae HTL determines the product yields by separating the HTL phases with an organic solvent. This study shows that its utilization affects the product distribution, increasing the amount of biocrude oil produced and reducing the concentration of organic molecules in the aqueous phase. The increase in the biocrude oil yield comes at the expense of a higher nitrogen and oxygen content. This harms the quality of the biocrude oil in view of its application as biofuel, due to undesired emissions upon combustion. The results herewith presented indicate that the yields of the HTL products strongly depend on the separation method applied. As the use of large amounts of organic solvents for separating the products at industrial scales is unlikely, their use is also discouraged in laboratory experimentation in order to forestall creating false expectations about the biocrude oil yields obtained by means of microalgae HTL.
Algal Research arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Algal Research arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2015.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 GermanyPublisher:Elsevier BV Authors:Hornung, U.;
Schneider, D.; Hornung, A.; Tumiatti, V.; +1 AuthorsHornung, U.
Hornung, U. in OpenAIREHornung, U.;
Schneider, D.; Hornung, A.; Tumiatti, V.; Seifert, H.;Hornung, U.
Hornung, U. in OpenAIREAim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Sudchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2008.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2008.11.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:Elsevier BV Authors:Prestigiacomo, Claudia;
Prestigiacomo, Claudia
Prestigiacomo, Claudia in OpenAIREZimmermann, Joscha;
Zimmermann, Joscha
Zimmermann, Joscha in OpenAIREHornung, Ursel;
Hornung, Ursel
Hornung, Ursel in OpenAIRERaffelt, Klaus;
+3 AuthorsRaffelt, Klaus
Raffelt, Klaus in OpenAIREPrestigiacomo, Claudia;
Prestigiacomo, Claudia
Prestigiacomo, Claudia in OpenAIREZimmermann, Joscha;
Zimmermann, Joscha
Zimmermann, Joscha in OpenAIREHornung, Ursel;
Hornung, Ursel
Hornung, Ursel in OpenAIRERaffelt, Klaus;
Dahmen, Nicolaus; Scialdone, Onofrio; Galia, Alessandro;Raffelt, Klaus
Raffelt, Klaus in OpenAIREKITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4097361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4097361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998 GermanyPublisher:Wiley Authors:Bockhorn, Henning;
Hornung, Andreas;Bockhorn, Henning
Bockhorn, Henning in OpenAIREHornung, Ursel;
Hornung, Ursel
Hornung, Ursel in OpenAIREAbstractFor chemical recycling of plastic refuses a cascade of cycled‐spheres reactors has been developed combining separation and decomposition of polymer mixtures by stepwise pyrolysis at moderate temperatures. In low‐temperature pyrolysis, mixtures of poly(vinyl chloride), polystyrene and polyethylene or polystyrene, polyamide 6 and polyethylene have been separated into hydrogen chloride, styrene and polyamide 6 and aliphatic compounds from polyethylene decomposition. Compared with the low‐temperature pyrolysis of the single components, some interactions between the polymers are found when pyrolyzing mixtures. Some mechanistic aspects of these interactions are discussed.
Macromolecular Sympo... arrow_drop_down Macromolecular SymposiaArticle . 1998 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/masy.19981350107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Macromolecular Sympo... arrow_drop_down Macromolecular SymposiaArticle . 1998 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/masy.19981350107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Authors: A. Hoffmann; Yujie Fan;Ursel Hornung;
Ursel Hornung; +3 AuthorsUrsel Hornung
Ursel Hornung in OpenAIREA. Hoffmann; Yujie Fan;Ursel Hornung;
Ursel Hornung;Ursel Hornung
Ursel Hornung in OpenAIREFrederico Gomes Fonseca;
Frederico Gomes Fonseca
Frederico Gomes Fonseca in OpenAIREM. Gong;
Nicolaus Dahmen;Abstract With the rapid growth in population and urbanization, a development in sustainable treatment of sewage sludge has become an urgent environmental concern globally. Lipid extraction has been investigated in order to valorize waste sewage sludge treatment through a pathway that leads to biodiesel. In this work, an integrated approach that combines lipid extraction of sewage sludge with hydrothermal liquefaction of the lipid-extracted sludge was studied in order to maximize valorization. The hydrothermal process was performed at temperatures ranging from 250 to 350 °C with 20 min. Regarding the bio-crude: below 300 °C, similar values are found with and without lipid-extraction, with the former variant containing more nitrogenated compounds stemming from Maillard reactions, while the latter more hydrocarbons; at 350 °C, higher bio-crude is obtained from raw sewage sludge owning to the conversion of lipids. Palmitic acid was selected as a model lipid to elucidate the role of lipids during the process, as well as to provide an improved understanding of the reaction network. Energy recovery reached values of 85.4% for hydrothermal liquefaction of sewage sludge and 98.3% for integrated approach considering the whole range of biofuel products. The energy consumption ratio was applied to estimate energetic efficiency for the combined process, making it possible to estimate the breakeven point of the process, plus the efficiency of both the hydrothermal process on its own in comparison with the combined option.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.124895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.124895&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG The complex nature of the hydrothermal liquefaction (HTL) of lignin product downstream requires an effective separation strategy. In this study, the use of adsorption separation was undertaken using deep eutectic solvent (DES)-modified amberlite XAD-4 adsorbents to achieve this goal. XAD-4 was modified with a choline chloride: ethylene glycol DES and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the Brunauer–Emmett–Teller (BET) test. In addition, the HTL product was characterized using Gas Chromatography with Flame Ionization Detection (GC-FID). The performance of unmodified and DES-modified adsorbents was initially tested on the model compounds of guaiacol, phenol and catechol, followed by the HTL product in a batch adsorption system. The Freundlich model best described the model compound adsorption system with a preferential affinity for guaiacol (kf = 12.52), outperforming phenol and catechol. Adsorption experiments showed an increase in capacity and selectivity for all species when the DES-modified adsorbents were used at all mass loadings. GC-FID analytics showed the DES-modified XAD-4 (300 mg) as having the highest selectivity for guaiacol, with an equilibrium concentration of 121.45 mg/L representing an 85.25% uptake, while catechol was the least favorably adsorbed. These results demonstrate the potential of DES-functionalized XAD-4 adsorbents in selectively isolating high-value aromatics from the HTL of the lignin product stream.
Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold more_vert Energies arrow_drop_down https://doi.org/10.20944/prepr...Article . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18092181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors:Marcus Breunig;
Philipp Gebhart;Marcus Breunig
Marcus Breunig in OpenAIREUrsel Hornung;
Ursel Hornung
Ursel Hornung in OpenAIREAndrea Kruse;
+1 AuthorsAndrea Kruse
Andrea Kruse in OpenAIREMarcus Breunig;
Philipp Gebhart;Marcus Breunig
Marcus Breunig in OpenAIREUrsel Hornung;
Ursel Hornung
Ursel Hornung in OpenAIREAndrea Kruse;
Eckhard Dinjus;Andrea Kruse
Andrea Kruse in OpenAIREAbstract As part of an ongoing project at Karlsruhe Institute of Technology (KIT), Germany, this work examines the liquefaction of varying feedstocks under conditions of the Bergius process of direct coal liquefaction by high pressure heterogeneous catalytic hydrogenolysis. Applying this process onto renewable resources like lignin and lignin-rich biomass has the potential to produce aromatic components for chemical industry. The performed experiments investigate the chemical conversion of different lignin types alongside samples of beech bark and beech wood fiber residues from pulp and paper industry using different heterogeneous catalysts and catalyst preparations. Reaction conditions such as catalyst concentration, temperature and concentration of sulfur were varied in order to optimize the conditions of liquefaction for the chosen setup. It will be shown that lignin and lignin-rich biomass can be liquefied under conditions of direct coal liquefaction using molybdic acid and sulfidic iron catalysts. The liquid oil product can be obtained in good yields up to 60% mass fraction of the input feedstock, consisting of alkylated phenols and alkyl benzenes while removing the majority of hetero atomic functional groups. This can be achieved while producing only a minimal amount of solid residue, reaction water and a valuable gas byproduct.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.06.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 GermanyPublisher:American Chemical Society (ACS) Authors:Bingfeng Guo;
Boda Yang; Peter Weil;Bingfeng Guo
Bingfeng Guo in OpenAIREShicheng Zhang;
+2 AuthorsShicheng Zhang
Shicheng Zhang in OpenAIREBingfeng Guo;
Boda Yang; Peter Weil;Bingfeng Guo
Bingfeng Guo in OpenAIREShicheng Zhang;
Shicheng Zhang
Shicheng Zhang in OpenAIREUrsel Hornung;
Nicolaus Dahmen;Ursel Hornung
Ursel Hornung in OpenAIREDichloromethane (DCM) is a solvent commonly used in laboratories for microalgae hydrothermal liquefaction (HTL) product separation. The addition of DCM would lead to an ���overestimation effect��� of biocrude yield and diminish biocrude quality. However, it is currently not clear to what extent this overestimation effect will impact a continuous HTL process. In this study, Chlorella vulgaris microalgae was processed in a continuous stirred tank reactor at different temperatures (300, 325, 350, 375, and 400 ��C) at 24 MPa for 15 min holding time. Two separation methods were applied to investigate the effect of using DCM in a cHTL product separation procedure in terms of product yield, biocrude elemental content, and aqueous product (AP) composition. Subsequently, the feasibility of reusing AP for algae cultivation has been evaluated. Results suggest that 350 ��C is the optimal temperature for cHTL operation, leading to the highest biocrude yield, and an average increase in biocrude yield of 9 wt % was achieved when using DCM in cHTL product separation. Within the temperature range investigated, an average biocrude yield estimation can be proposed by yield$_{non-DCM}$ ��� 0.818 �� yield$_{DCM}$. The AP has been characterized by total organic carbon and total nitrogen, high-performance liquid chromatography, and inductively coupled plasma optical emission spectroscopy. Results show that at 350���375 ��C more nitrogen and other ions were directed into the AP, which could be advantageous in nutrient recovery. With the help of optical density testing, algae was shown to exhibit a better growth using AP with activated carbon absorption purification treatment as compared to the standard medium. The recovery of water and nutrients from the HTL-AP could improve the economics of a microalgae biorefinery process.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.1c02523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.1c02523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 GermanyPublisher:Elsevier BV Authors:Bockhorn, Henning;
Hentschel, Janbernd; Hornung, Andreas;Bockhorn, Henning
Bockhorn, Henning in OpenAIREHornung, Ursel;
Hornung, Ursel
Hornung, Ursel in OpenAIREAbstract Kinetic data obtained from micro thermogravimetry and gradient free reactor experiments confirm that different molecular structures of commodity plastics bring about different reaction mechanisms of thermal decomposition, different reaction rates, and different temperature dependencies of the decomposition rates. From that, stepwise pyrolysis of mixtures of plastics seems to be reasonable where the different components of the mixture are pyrolysed at different temperatures. To perform a stepwise pyrolysis in laboratory scale a cascade of well stirred reactors has been developed where mixing of the reactor contents occurs by circulating of stainless steel spheres. Examples for the separation of single plastics by stepwise thermal decomposition of mixtures of poly(vinyl chloride), polystyrene and polyethylene are presented. In the first step hydrogen chloride from poly(vinyl chloride) is released, in the second step styrene from polysytrene is formed and in the third step aliphatic compounds from polyethylene decompositon are trapped. Differences in the thermal degradation of single polymers and mixtures of polymers, e.g. in the apparent activation energies and preexponential factors, are investigated using mixtures and blends of polyethylene and polystyrene.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0009-2509(98)00385-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 1999 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0009-2509(98)00385-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu