- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Springer Science and Business Media LLC Un Hyuck Kim; Payam Kaghazchi; Byoung Ki Son; Liang-Yin Kuo; Jun Liu; Jun Liu; Geon Tae Park; Gyeong Won Nam; Yang-Kook Sun; Chong Seung Yoon;The demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure. Nickel-rich layered oxide cathodes are at the forefront of the development of automobile batteries. The authors report an atomic and microstructural engineering design for a Li[Ni0.90Co0.09Ta0.01]O2 cathode that exhibits outstanding long-term cyclability and high energy at full depth of discharge in full cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00693-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00693-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:American Association for the Advancement of Science (AAAS) Authors: Feng Wu; Jun Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34133/2020/7981289&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34133/2020/7981289&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC M. Stanley Whittingham; Shuru Chen; Jason Du; Hongkyung Lee; Wu Xu; Jun Liu; Ji-Guang Zhang; Chaojiang Niu; Qiuyan Li; Jie Xiao; Jie Xiao;Lithium metal anodes have attracted much attention as candidates for high-energy batteries, but there have been few reports of long cycling behaviour, and the degradation mechanism of realistic high-energy Li metal cells remains unclear. Here, we develop a prototypical 300 Wh kg−1 (1.0 Ah) pouch cell by integrating a Li metal anode, a LiNi0.6Mn0.2Co0.2O2 cathode and a compatible electrolyte. Under small uniform external pressure, the cell undergoes 200 cycles with 86% capacity retention and 83% energy retention. In the initial 50 cycles, flat Li foil converts into large Li particles that are entangled in the solid-electrolyte interphase, which leads to rapid volume expansion of the anode (cell thickening of 48%). As cycling continues, the external pressure helps the Li anode maintain good contact between the Li particles, which ensures a conducting percolation pathway for both ions and electrons, and thus the electrochemical reactions continue to occur. Accordingly, the solid Li particles evolve into a porous structure, which manifests in substantially reduced cell swelling by 19% in the subsequent 150 cycles. Much has been said about the high-energy, long-lasting potential of Li metal batteries, and yet little has been demonstrated at the cell scale. Here, Jun Liu and colleagues demonstrate a Li metal pouch cell with a 300 Wh kg−1 energy density and a 200-cycle lifetime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0390-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0390-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Yan Jin; Phung M. L. Le; Peiyuan Gao; Yaobin Xu; Biwei Xiao; Mark H. Engelhard; Xia Cao; Thanh D. Vo; Jiangtao Hu; Lirong Zhong; Bethany E. Matthews; Ran Yi; Chongmin Wang; Xiaolin Li; Jun Liu; Ji-Guang Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01055-0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01055-0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Dianying Liu; Bingbin Wu; Yaobin Xu; Jacob Ellis; Arthur Baranovskiy; Dongping Lu; Joshua Lochala; Cassidy Anderson; Kevin Baar; Deyang Qu; Jihui Yang; Diego Galvez-Aranda; Katherine-Jaime Lopez; Perla B. Balbuena; Jorge M. Seminario; Jun Liu; Jie Xiao;Abstract Lithium (Li) metal battery technology has attracted world-wide attention because of its high energy density, but its practical application is hindered by several challenges, with one significant issue being the large volume change and cell swelling. While external pressure is known to have a profound effect on cell performance, there are currently no reports exploring the relationship between external pressure and the electroplating of Li+ in large-format pouch cells to enhance overall performance. Here we investigate the influence of externally applied pressure on the electroplating and stripping of lithium metal in 350 Wh/kg pouch cells. A hybrid constant gap and constant pressure design is designed to apply a minimal external pressure for practical application. The self-generated pressures are monitored and quantified which are further correlated to the observed charge-discharge processes. A two-stage cycling process is observed. In the first stage, Li+ ions utilized are mainly supplied by the cathode which shuttle between the cathode and anode with minimal Li loss which minimizes cell swelling but only happens when pressure is applied appropriately. In the second stage, Li from the Li foil anode participates in the reaction and the thickness of the anode gradually increases. However, even after extensive cycling, cell swelling remains less than 10%, comparable to that of state-of-the-art Li-ion batteries. In addition, the pressure distribution along the horizontal direction across the surface of Li metal pouch cell reveals a complex behavior of Li+ migration during the electroplating (charge) process. The external pressure encourages a preferred plating process of Li in the central region, necessitating the development of new strategies to address uneven Li plating and utilization to advance Li metal battery technology.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01488-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01488-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Geon-Tae Park; Been Namkoong; Su-Bin Kim; Jun Liu; Chong S. Yoon; Yang-Kook Sun;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01106-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01106-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Springer Science and Business Media LLC Jie Xiao; Nicole Adelstein; Yujing Bi; Wenjuan Bian; Jordi Cabana; Corie L. Cobb; Yi Cui; Shen J. Dillon; Marca M. Doeff; Saiful M. Islam; Kevin Leung; Mengya Li; Feng Lin; Jun Liu; Hongmei Luo; Amy C. Marschilok; Ying Shirley Meng; Yue Qi; Ritu Sahore; Kayla G. Sprenger; Robert C. Tenent; Michael F. Toney; Wei Tong; Liwen F. Wan; Chongmin Wang; Stephen E. Weitzner; Bingbin Wu; Yaobin Xu;The cathode–electrolyte interphase plays a pivotal role in determining the usable capacity and cycling stability of electrochemical cells, yet it is overshadowed by its counterpart, the solid–electrolyte interphase. This is primarily due to the prevalence of side reactions, particularly at low potentials on the negative electrode, especially in state-of-the-art Li-ion batteries where the charge cutoff voltage is limited. However, as the quest for high-energy battery technologies intensifies, there is a pressing need to advance the study of cathode–electrolyte interphase properties. Here, we present a comprehensive approach to analyse the cathode–electrolyte interphase in battery systems. We underscore the importance of employing model cathode materials and coin cell protocols to establish baseline performance. Additionally, we delve into the factors behind the inconsistent and occasionally controversial findings related to the cathode–electrolyte interphase. We also address the challenges and opportunities in characterizing and simulating the cathode–electrolyte interphase, offering potential solutions to enhance its relevance to real-world applications.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NCFull-Text: https://escholarship.org/uc/item/53q6z8c7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01639-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NCFull-Text: https://escholarship.org/uc/item/53q6z8c7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01639-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Xia Cao; Xiaodi Ren; Lianfeng Zou; Mark H. Engelhard; William Huang; Hansen Wang; Bethany E. Matthews; Hongkyung Lee; Chaojiang Niu; Bruce W. Arey; Yi Cui; Chongmin Wang; Jie Xiao; Jun Liu; Wu Xu; Ji-Guang Zhang;Lithium (Li) pulverization and associated large volume expansion during cycling is one of the most critical barriers for the safe operation of Li-metal batteries. Here, we report an approach to minimize the Li pulverization using an electrolyte based on a fluorinated orthoformate solvent. The solid–electrolyte interphase (SEI) formed in this electrolyte clearly exhibits a monolithic feature, which is in sharp contrast with the widely reported mosaic- or multilayer-type SEIs that are not homogeneous and could lead to uneven Li stripping/plating and fast Li and electrolyte depletion over cycling. The highly homogeneous and amorphous SEI not only prevents dendritic Li formation, but also minimizes Li loss and volumetric expansion. Furthermore, this new electrolyte strongly suppresses the phase transformation of the LiNi0.8Co0.1Mn0.1O2 cathode (from layered structure to rock salt) and stabilizes its structure. Tests of high-voltage Li||NMC811 cells show long-term cycling stability and high rate capability, as well as reduced safety concerns. Parasitic reactions between Li metal and electrolytes need to be mitigated in Li-metal batteries. Here, the authors report the use of a fluorinated orthoformate-based electrolyte, leading to a monolithic solid–electrolyte interphase and subsequently a high-performance Li-metal battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0464-5&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0464-5&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Payam Kaghazchi; Liang-Yin Kuo; Geon Tae Park; Chong Seung Yoon; Gyeong Won Nam; Jun Liu; Jun Liu; Yang-Kook Sun; Byoung Ki Son; Un Hyuck Kim;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00760-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00760-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Mei Cai; M. Stanley Whittingham; Yujing Bi; Bingbin Wu; Jun Liu; Jun Liu; Bruce Dunn; Jie Xiao; Jie Xiao; Ji Guang Zhang; Tobias Glossmann; Ryuta Sugiura; Tetsuya Osaka; Jihui Yang; Qiuyan Li;Coulombic efficiency (CE) has been widely used in battery research as a quantifiable indicator for the reversibility of batteries. While CE helps to predict the lifespan of a lithium-ion battery, the prediction is not necessarily accurate in a rechargeable lithium metal battery. Here, we discuss the fundamental definition of CE and unravel its true meaning in lithium-ion batteries and a few representative configurations of lithium metal batteries. Through examining the similarities and differences of CE in lithium-ion batteries and lithium metal batteries, we establish a CE measuring protocol with the aim of developing high-energy long-lasting practical lithium metal batteries. The understanding of CE and the CE protocol are broadly applicable in other rechargeable metal batteries including Zn, Mg and Na batteries. Coulombic efficiency (CE) has been frequently used to assess the cyclability of newly developed materials for lithium metal batteries. The authors argue that caution must be exercised during the assessment of CE, and propose a CE testing protocol for the development of lithium metal batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0648-z&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0648-z&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Springer Science and Business Media LLC Un Hyuck Kim; Payam Kaghazchi; Byoung Ki Son; Liang-Yin Kuo; Jun Liu; Jun Liu; Geon Tae Park; Gyeong Won Nam; Yang-Kook Sun; Chong Seung Yoon;The demand for energy sources with high energy densities continues to push the limits of Ni-rich layered oxides, which are currently the most promising cathode materials in automobile batteries. Although most current research is focused on extending battery life using Ni-rich layered cathodes, long-term cycling stability using a full cell is yet to be demonstrated. Here, we introduce Li[Ni0.90Co0.09Ta0.01]O2, which exhibits 90% capacity retention after 2,000 cycles at full depth of discharge (DOD) and a cathode energy density >850 Wh kg−1. In contrast, the currently most sought-after Li[Ni0.90Co0.09Al0.01]O2 cathode loses ~40% of its initial capacity within 500 cycles at full DOD. Cycling stability is achieved by radially aligned primary particles with [003] crystallographic texture that effectively dissipate the internal strain occurring in the deeply charged state, while the substitution of Ni3+ with higher valence ions induces ordered occupation of Ni ions in the Li slab and stabilizes the delithiated structure. Nickel-rich layered oxide cathodes are at the forefront of the development of automobile batteries. The authors report an atomic and microstructural engineering design for a Li[Ni0.90Co0.09Ta0.01]O2 cathode that exhibits outstanding long-term cyclability and high energy at full depth of discharge in full cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00693-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00693-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:American Association for the Advancement of Science (AAAS) Authors: Feng Wu; Jun Liu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34133/2020/7981289&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.34133/2020/7981289&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC M. Stanley Whittingham; Shuru Chen; Jason Du; Hongkyung Lee; Wu Xu; Jun Liu; Ji-Guang Zhang; Chaojiang Niu; Qiuyan Li; Jie Xiao; Jie Xiao;Lithium metal anodes have attracted much attention as candidates for high-energy batteries, but there have been few reports of long cycling behaviour, and the degradation mechanism of realistic high-energy Li metal cells remains unclear. Here, we develop a prototypical 300 Wh kg−1 (1.0 Ah) pouch cell by integrating a Li metal anode, a LiNi0.6Mn0.2Co0.2O2 cathode and a compatible electrolyte. Under small uniform external pressure, the cell undergoes 200 cycles with 86% capacity retention and 83% energy retention. In the initial 50 cycles, flat Li foil converts into large Li particles that are entangled in the solid-electrolyte interphase, which leads to rapid volume expansion of the anode (cell thickening of 48%). As cycling continues, the external pressure helps the Li anode maintain good contact between the Li particles, which ensures a conducting percolation pathway for both ions and electrons, and thus the electrochemical reactions continue to occur. Accordingly, the solid Li particles evolve into a porous structure, which manifests in substantially reduced cell swelling by 19% in the subsequent 150 cycles. Much has been said about the high-energy, long-lasting potential of Li metal batteries, and yet little has been demonstrated at the cell scale. Here, Jun Liu and colleagues demonstrate a Li metal pouch cell with a 300 Wh kg−1 energy density and a 200-cycle lifetime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0390-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0390-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Yan Jin; Phung M. L. Le; Peiyuan Gao; Yaobin Xu; Biwei Xiao; Mark H. Engelhard; Xia Cao; Thanh D. Vo; Jiangtao Hu; Lirong Zhong; Bethany E. Matthews; Ran Yi; Chongmin Wang; Xiaolin Li; Jun Liu; Ji-Guang Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01055-0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01055-0&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Dianying Liu; Bingbin Wu; Yaobin Xu; Jacob Ellis; Arthur Baranovskiy; Dongping Lu; Joshua Lochala; Cassidy Anderson; Kevin Baar; Deyang Qu; Jihui Yang; Diego Galvez-Aranda; Katherine-Jaime Lopez; Perla B. Balbuena; Jorge M. Seminario; Jun Liu; Jie Xiao;Abstract Lithium (Li) metal battery technology has attracted world-wide attention because of its high energy density, but its practical application is hindered by several challenges, with one significant issue being the large volume change and cell swelling. While external pressure is known to have a profound effect on cell performance, there are currently no reports exploring the relationship between external pressure and the electroplating of Li+ in large-format pouch cells to enhance overall performance. Here we investigate the influence of externally applied pressure on the electroplating and stripping of lithium metal in 350 Wh/kg pouch cells. A hybrid constant gap and constant pressure design is designed to apply a minimal external pressure for practical application. The self-generated pressures are monitored and quantified which are further correlated to the observed charge-discharge processes. A two-stage cycling process is observed. In the first stage, Li+ ions utilized are mainly supplied by the cathode which shuttle between the cathode and anode with minimal Li loss which minimizes cell swelling but only happens when pressure is applied appropriately. In the second stage, Li from the Li foil anode participates in the reaction and the thickness of the anode gradually increases. However, even after extensive cycling, cell swelling remains less than 10%, comparable to that of state-of-the-art Li-ion batteries. In addition, the pressure distribution along the horizontal direction across the surface of Li metal pouch cell reveals a complex behavior of Li+ migration during the electroplating (charge) process. The external pressure encourages a preferred plating process of Li in the central region, necessitating the development of new strategies to address uneven Li plating and utilization to advance Li metal battery technology.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01488-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01488-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Geon-Tae Park; Been Namkoong; Su-Bin Kim; Jun Liu; Chong S. Yoon; Yang-Kook Sun;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01106-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-022-01106-6&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United StatesPublisher:Springer Science and Business Media LLC Jie Xiao; Nicole Adelstein; Yujing Bi; Wenjuan Bian; Jordi Cabana; Corie L. Cobb; Yi Cui; Shen J. Dillon; Marca M. Doeff; Saiful M. Islam; Kevin Leung; Mengya Li; Feng Lin; Jun Liu; Hongmei Luo; Amy C. Marschilok; Ying Shirley Meng; Yue Qi; Ritu Sahore; Kayla G. Sprenger; Robert C. Tenent; Michael F. Toney; Wei Tong; Liwen F. Wan; Chongmin Wang; Stephen E. Weitzner; Bingbin Wu; Yaobin Xu;The cathode–electrolyte interphase plays a pivotal role in determining the usable capacity and cycling stability of electrochemical cells, yet it is overshadowed by its counterpart, the solid–electrolyte interphase. This is primarily due to the prevalence of side reactions, particularly at low potentials on the negative electrode, especially in state-of-the-art Li-ion batteries where the charge cutoff voltage is limited. However, as the quest for high-energy battery technologies intensifies, there is a pressing need to advance the study of cathode–electrolyte interphase properties. Here, we present a comprehensive approach to analyse the cathode–electrolyte interphase in battery systems. We underscore the importance of employing model cathode materials and coin cell protocols to establish baseline performance. Additionally, we delve into the factors behind the inconsistent and occasionally controversial findings related to the cathode–electrolyte interphase. We also address the challenges and opportunities in characterizing and simulating the cathode–electrolyte interphase, offering potential solutions to enhance its relevance to real-world applications.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NCFull-Text: https://escholarship.org/uc/item/53q6z8c7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01639-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BY NCFull-Text: https://escholarship.org/uc/item/53q6z8c7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-024-01639-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Xia Cao; Xiaodi Ren; Lianfeng Zou; Mark H. Engelhard; William Huang; Hansen Wang; Bethany E. Matthews; Hongkyung Lee; Chaojiang Niu; Bruce W. Arey; Yi Cui; Chongmin Wang; Jie Xiao; Jun Liu; Wu Xu; Ji-Guang Zhang;Lithium (Li) pulverization and associated large volume expansion during cycling is one of the most critical barriers for the safe operation of Li-metal batteries. Here, we report an approach to minimize the Li pulverization using an electrolyte based on a fluorinated orthoformate solvent. The solid–electrolyte interphase (SEI) formed in this electrolyte clearly exhibits a monolithic feature, which is in sharp contrast with the widely reported mosaic- or multilayer-type SEIs that are not homogeneous and could lead to uneven Li stripping/plating and fast Li and electrolyte depletion over cycling. The highly homogeneous and amorphous SEI not only prevents dendritic Li formation, but also minimizes Li loss and volumetric expansion. Furthermore, this new electrolyte strongly suppresses the phase transformation of the LiNi0.8Co0.1Mn0.1O2 cathode (from layered structure to rock salt) and stabilizes its structure. Tests of high-voltage Li||NMC811 cells show long-term cycling stability and high rate capability, as well as reduced safety concerns. Parasitic reactions between Li metal and electrolytes need to be mitigated in Li-metal batteries. Here, the authors report the use of a fluorinated orthoformate-based electrolyte, leading to a monolithic solid–electrolyte interphase and subsequently a high-performance Li-metal battery.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0464-5&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0464-5&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Payam Kaghazchi; Liang-Yin Kuo; Geon Tae Park; Chong Seung Yoon; Gyeong Won Nam; Jun Liu; Jun Liu; Yang-Kook Sun; Byoung Ki Son; Un Hyuck Kim;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00760-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-00760-y&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Mei Cai; M. Stanley Whittingham; Yujing Bi; Bingbin Wu; Jun Liu; Jun Liu; Bruce Dunn; Jie Xiao; Jie Xiao; Ji Guang Zhang; Tobias Glossmann; Ryuta Sugiura; Tetsuya Osaka; Jihui Yang; Qiuyan Li;Coulombic efficiency (CE) has been widely used in battery research as a quantifiable indicator for the reversibility of batteries. While CE helps to predict the lifespan of a lithium-ion battery, the prediction is not necessarily accurate in a rechargeable lithium metal battery. Here, we discuss the fundamental definition of CE and unravel its true meaning in lithium-ion batteries and a few representative configurations of lithium metal batteries. Through examining the similarities and differences of CE in lithium-ion batteries and lithium metal batteries, we establish a CE measuring protocol with the aim of developing high-energy long-lasting practical lithium metal batteries. The understanding of CE and the CE protocol are broadly applicable in other rechargeable metal batteries including Zn, Mg and Na batteries. Coulombic efficiency (CE) has been frequently used to assess the cyclability of newly developed materials for lithium metal batteries. The authors argue that caution must be exercised during the assessment of CE, and propose a CE testing protocol for the development of lithium metal batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0648-z&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-020-0648-z&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
