- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Elsevier BV Hannan, M. A.; Lipu, M. S.Hossain; Ker, Pin Jern; Begum, R. A.; Agelidis, Vasilios G.; Blaabjerg, F.;Global energy consumption is increasing at a dramatic rate and will likely continue to do so. The major source of energy is still fossil fuel, which has resulted in the well-documented problem of global warming due to the emission of greenhouse gases from the burning of such fuel. Climate change and global warming are among the crucial and complex issues encountered by the world today, and they require an immediate solution. Technological innovation is the key to ensuring energy security without causing emissions and providing efficient cost-effective energy solutions. Power electronic technologies offer high reliability and renewable energy conversion efficiency, thus contributing to energy conservation, improving energy efficiency, and helping in the mitigation of harmful global emissions. This review focuses on various aspects of power electronic technologies and their importance in tackling carbon emission and global warming problems. The key topologies of power electronic converters are explained based on types, control difficulties, benefits, and drawbacks. Power electronic controllers utilized for energy conversion are comprehensively reviewed with regard to their structure, algorithm complexity, strengths and weaknesses, and mathematical modeling. The review focuses on power converters and controllers used in different applications and highlight their contributions to energy conservation, increasing the share of renewable energy sources, and mitigating emissions. Moreover, existing research gaps, issues, and challenges are identified. The insights provided by are expected to lead to the enhanced development of advanced power electronic converters and controllers for sustainable energy conversion. Such development can reduce carbon emissions and mitigate global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Mahammad A. Hannan; Molla S. Hossain Lipu; Aini Hussain; Mohamad H. Saad; Afida Ayob;The state of charge (SOC) is a critical evaluation index of battery residual capacity. The significance of an accurate SOC estimation is great for a lithium-ion battery to ensure its safe operation and to prevent from over-charging or over-discharging. However, to estimate an accurate capacity of SOC of the lithium-ion battery has become a major concern for the electric vehicle (EV) industry. Therefore, numerous researches are being conducted to address the challenges and to enhance the battery performance. The main objective of this paper is to develop an accurate SOC estimation approach for a lithium-ion battery by improving back-propagation neural network (BPNN) capability using backtracking search algorithm (BSA). BSA optimization is utilized to improve the accuracy and robustness of BPNN model by finding the optimal value of hidden layer neurons and learning rate. In this paper, Dynamic Stress Test and Federal Urban Driving Schedule drive profiles are applied for testing the model at three different temperatures. The obtained results of the BPNN based BSA model are compared with the radial basis function neural network, generalized regression neural network and extreme learning machine model using statistical error values of root mean square error, mean absolute error, mean absolute percentage error, and SOC error to check and validate the model performance. The obtained results show that the BPNN based BSA model outperforms other neural network models in estimating SOC with high accuracy under different EV profiles and temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2797976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2797976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Md Hasan Maruf; Sameya Afrin July; Mamun Rabbani; Shafrida Sahrani; Molla Shahadat Hossain Lipu; Mahidur R. Sarker; Ratil H. Ashique; Md. Shahrial Kabir; A. S. M. Shihavuddin;doi: 10.3390/su15065452
This paper explores the energy management of a natural gas-based thermal power plant, with a focus on improving its efficiency, sustainability, and economic feasibility. The study uses the Ashuganj Power Station Company Limited (APSCL) in Bangladesh as a case study. To evaluate the efficiency of the APSCL, both energy and exergy perspectives are considered, and sustainability is assessed through exergetic parameters. The plant’s economic feasibility is analyzed based on its fuel costs and operational losses. The results of the study indicate that the energy and exergy efficiencies of the APSCL vary from 32.97% to 33.21% and from 32.63% to 32.87%, respectively, for steam turbines and from 39.77% to 56.98% and from 39.36% to 56.40%, respectively, for combined cycle power plants (CCPP) during 2016–2021. The slightly lower efficiency in exergy calculations accounts for the system loss incurred over time, which is often omitted in efficiency calculations using energy parameters. To measure the sustainability of the APSCL, eight key indicators are used: the depletion number, exergy sustainable index, cumulative exergy loss, relative irreversibility, lack of production, the wasted exergy ratio, environmental effect factor, and improvement potential. The results indicate that APSCL still has opportunities for improvement in terms of sustainability, with 50% of the fuel being depleted in the plant, contributing to a sustainable index of 2.00 and cumulative exergy loss varying between 48.59 and 21.17. Regarding financial costs and losses, APSCL has experienced an increasing trend in the price of electricity generated. However, by implementing intelligent maintenance practices and upgrading equipment in a timely manner, it is possible to minimize costs and increase exergy output, reducing the per-unit fuel requirement for electricity production and the global carbon footprint significantly.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5452/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5452/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020Publisher:IEEE Muhamad Mansor; Pin Jern Ker; Dickson Neoh Tze How; M. S. Hossain Lipu; Mahammad A. Hannan; Kashem M. Muttaqi;The state of charge (SOC) is a crucial indicator of a Li-ion battery management system (BMS). A BMS with a good SOC assessment can dramatically improve the lifespan of the battery and ensure the safety of the end-user. With deep learning making tremendous strides in many other fields, this study aims to provide an empirical evaluation of commonly used deep learning methods on the task of SOC estimation. We propose the use of two-hidden-layer gated recurrent units (GRU) to estimate the SOC at various ambient temperatures. In this work, we conducted two experiment setups to showcase the capability of the proposed GRU model. In the first setup, the GRU was trained on the DST, BJDST and US06 drive cycle and evaluated the FUDS drive cycle upon convergence. The same procedure was repeated with the second setup except the GRU was trained on the DST, BJDST and FUDS drive cycle and evaluated on the US06 drive cycle. In both experiment setups, the proposed GRU was evaluated on a novel drive cycle that it has not encountered during the training phase. We show that a two-hidden-layer GRU with appropriate hyperparameter combination and training methodology can reliably estimate the SOC of novel drive cycles at various ambient temperatures in comparison with other deep learning methods such as simple recurrent network (SRNN), Long Short-Term Memory (LSTM), 1D Residual Network (Resnet), 1D Visual Geometry Group Network (VGG) and the Multilayer Perceptron (MLP). The proposed GRU achieves 2.3% RMSE on the FUDS drive cycle and 1.2% RMSE on the US06 drive cycle outperforming all other models.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/ias449...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias44978.2020.9334824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/ias449...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias44978.2020.9334824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Tarek Abedin; M. Shahadat Hossain Lipu; Mahammad A. Hannan; Pin Jern Ker; Safwan A. Rahman; Chong Tak Yaw; Sieh K. Tiong; Kashem M. Muttaqi;doi: 10.3390/en14164829
High-voltage direct current (HVDC) has received considerable attention due to several advantageous features such as minimum transmission losses, enhanced stability, and control operation. An appropriate model of HVDC is necessary to assess the operating conditions as well as to analyze the transient and steady-state stabilities integrated with the AC networks. Nevertheless, the construction of an HVDC model is challenging due to the high computational cost, which needs huge ranges of modeling experience. Therefore, advanced dynamic modeling of HVDC is necessary to improve stability with minimum power loss. This paper presents a comprehensive review of the various dynamic modeling of the HVDC transmission system. In line with this matter, an in-depth investigation of various HVDC mathematical models is carried out including average-value modeling (AVM), voltage source converter (VSC), and line-commutated converter (LCC). Moreover, numerous stability assessment models of HVDC are outlined with regard to stability improvement models, current-source system stability, HVDC link stability, and steady-state rotor angle stability. In addition, the various control schemes of LCC-HVDC systems and modular multilevel converter- multi-terminal direct current (MMC-MTDC) are highlighted. This paper also identifies the key issues, the problems of the existing HVDC models as well as providing some selective suggestions for future improvement. All the highlighted insights in this review will hopefully lead to increased efforts toward the enhancement of the modeling for the HVDC system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) K. Parvin; M. S. Hossain Lipu; M. A. Hannan; Majid A. Abdullah; Ker Pin Jern; R. A. Begum; Muhamad Mansur; Kashem M. Muttaqi; T. M. Indra Mahlia; Zhao Yang Dong;Les bâtiments représentent une quantité importante de consommation d'énergie, ce qui entraîne des problèmes d'émissions mondiales et de changement climatique. Ainsi, la gestion de l'énergie dans un bâtiment est de plus en plus explorée en raison de son potentiel important de réduction des dépenses globales d'électricité pour les consommateurs et d'atténuation des émissions de carbone. En ligne avec cela, un plus grand contrôle et une optimisation de la gestion de l'énergie intégrée aux ressources énergétiques renouvelables sont nécessaires pour améliorer l'efficacité énergétique des bâtiments tout en satisfaisant le confort de l'environnement intérieur. Même si des mesures sont prises pour réduire la consommation d'énergie dans les bâtiments avec plusieurs techniques d'optimisation et de contrôle, certains problèmes restent non résolus. Par conséquent, ce travail fournit un examen complet des méthodes de contrôle conventionnelles et intelligentes en mettant l'accent sur leur classification, leurs caractéristiques, leur configuration, leurs avantages et leurs inconvénients. Cet examen examine de manière critique les différents objectifs et contraintes d'optimisation en ce qui concerne la gestion du confort, la consommation d'énergie et la planification. En outre, la revue décrit les différentes approches méthodologiques des algorithmes d'optimisation utilisés dans la gestion de l'énergie des bâtiments. Les contributions du contrôleur et de l'optimisation dans la gestion de l'énergie des bâtiments avec la relation des objectifs de développement durable (ODD) sont expliquées rigoureusement. Des discussions sur les principaux défis des méthodes existantes sont présentées afin d'identifier les lacunes pour les recherches futures. L'examen fournit des orientations futures efficaces qui seraient bénéfiques pour les chercheurs et les industriels afin de concevoir un contrôleur optimisé efficacement pour la gestion de l'énergie du bâtiment en vue de cibler les ODD. Los edificios representan una cantidad significativa de consumo de energía que conduce a los problemas de las emisiones globales y el cambio climático. Por lo tanto, la gestión de la energía en un edificio se explora cada vez más debido a su importante potencial para reducir los gastos generales de electricidad para los consumidores y mitigar las emisiones de carbono. En línea con ello, se requiere un mayor control y optimización de la gestión energética integrada con los recursos energéticos renovables para mejorar la eficiencia energética del edificio a la vez que se satisface el confort del entorno interior. A pesar de que se están tomando medidas para reducir el consumo de energía en edificios con varias técnicas de optimización y control, algunos problemas siguen sin resolverse. Por lo tanto, este trabajo proporciona una revisión exhaustiva de los métodos de control convencionales e inteligentes con énfasis en su clasificación, características, configuración, beneficios e inconvenientes. Esta revisión investiga críticamente los diferentes objetivos y restricciones de optimización con respecto a la gestión del confort, el consumo de energía y la programación. Además, la revisión describe los diferentes enfoques metodológicos de los algoritmos de optimización utilizados en la gestión energética de los edificios. Se explican de forma rigurosa los aportes del controlador y la optimización en la gestión energética del edificio con la relación de los objetivos de desarrollo sostenible (ODS). Se presentan discusiones sobre los desafíos clave de los métodos existentes para identificar las brechas para futuras investigaciones. La revisión ofrece algunas direcciones futuras efectivas que serían beneficiosas para los investigadores e industriales para diseñar un controlador optimizado de manera eficiente para la gestión de la energía de los edificios hacia la consecución de los ODS. Buildings account for a significant amount of energy consumption leading to the issues of global emissions and climate change. Thus, energy management in a building is increasingly explored due to its significant potential in reducing the overall electricity expenses for the consumers and mitigating carbon emissions. In line with that, the greater control and optimization of energy management integrated with renewable energy resources is required to improve building energy efficiency while satisfying indoor environment comfort. Even though actions are being taken to reduce the energy consumption in buildings with several optimization and controller techniques, yet some issues remain unsolved. Therefore, this work provides a comprehensive review of the conventional and intelligent control methods with emphasis on their classification, features, configuration, benefits, and drawbacks. This review critically investigates the different optimization objectives and constraints with respect to comfort management, energy consumption, and scheduling. Furthermore, the review outlines the different methodological approaches to optimization algorithms used in building energy management. The contributions of controller and optimization in building energy management with the relation of sustainable development goals (SDGs) are explained rigorously. Discussions on the key challenges of the existing methods are presented to identify the gaps for future research. The review delivers some effective future directions that would be beneficial to the researchers and industrialists to design an efficiently optimized controller for building energy management toward targeting SDGs. تمثل المباني كمية كبيرة من استهلاك الطاقة مما يؤدي إلى قضايا الانبعاثات العالمية وتغير المناخ. وبالتالي، يتم استكشاف إدارة الطاقة في المبنى بشكل متزايد بسبب إمكاناته الكبيرة في تقليل نفقات الكهرباء الإجمالية للمستهلكين والتخفيف من انبعاثات الكربون. وتماشياً مع ذلك، يلزم زيادة التحكم في إدارة الطاقة المتكاملة مع موارد الطاقة المتجددة وتحسينها لتحسين كفاءة استخدام الطاقة في المباني مع إرضاء راحة البيئة الداخلية. على الرغم من اتخاذ إجراءات لتقليل استهلاك الطاقة في المباني باستخدام العديد من تقنيات التحسين والتحكم، إلا أن بعض المشكلات لا تزال دون حل. لذلك، يوفر هذا العمل مراجعة شاملة لأساليب التحكم التقليدية والذكية مع التركيز على تصنيفها وميزاتها وتكوينها وفوائدها وعيوبها. تبحث هذه المراجعة بشكل نقدي في أهداف وقيود التحسين المختلفة فيما يتعلق بإدارة الراحة واستهلاك الطاقة والجدولة. علاوة على ذلك، تحدد المراجعة الأساليب المنهجية المختلفة لخوارزميات التحسين المستخدمة في بناء إدارة الطاقة. يتم شرح مساهمات المراقب والتحسين في بناء إدارة الطاقة مع العلاقة بين أهداف التنمية المستدامة (SDGs) بدقة. يتم تقديم مناقشات حول التحديات الرئيسية للطرق الحالية لتحديد الثغرات للبحث في المستقبل. تقدم المراجعة بعض الاتجاهات المستقبلية الفعالة التي ستكون مفيدة للباحثين والصناعيين لتصميم وحدة تحكم محسنة بكفاءة لبناء إدارة الطاقة نحو استهداف أهداف التنمية المستدامة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3065087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3065087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Shaheer Ansari; Afida Ayob; Molla S. Hossain Lipu; Mohamad Hanif Md Saad; Aini Hussain;doi: 10.3390/su13158120
Solar photovoltaic (PV) is one of the prominent sustainable energy sources which shares a greater percentage of the energy generated from renewable resources. As the need for solar energy has risen tremendously in the last few decades, monitoring technologies have received considerable attention in relation to performance enhancement. Recently, the solar PV monitoring system has been integrated with a wireless platform that comprises data acquisition from various sensors and nodes through wireless data transmission. However, several issues could affect the performance of solar PV monitoring, such as large data management, signal interference, long-range data transmission, and security. Therefore, this paper comprehensively reviews the progress of several solar PV-based monitoring technologies focusing on various data processing modules and data transmission protocols. Each module and transmission protocol-based monitoring technology is investigated with regard to type, design, implementations, specifications, and limitations. The critical discussion and analysis are carried out with respect to configurations, parameters monitored, software, platform, achievements, and suggestions. Moreover, various key issues and challenges are explored to identify the existing research gaps. Finally, this review delivers selective proposals for future research works. All the highlighted insights of this review will hopefully lead to increased efforts toward the enhancement of the monitoring technologies in future sustainable solar PV applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:AIP Publishing Authors: Molla Shahadat Hossain Lipu; Arif Md. Waliullah Bhuiyan;doi: 10.1063/1.4896697
Dhaka, the capital city of Bangladesh, is one of the fastest growing cities in Southern Asia, having population of more than 13 million, and is expected to accommodate more than 20 million by 2025. This growth has been accompanied by the growth of urban slums and the subsequent challenges to access basic urban services like water, sanitation, clean energy, and transport for the urban poor. Despite its importance for basic survival, electricity supply is not recognized as a basic urban service, as a result of which, the poverty alleviation and basic infrastructure provision programs have not addressed this issue completely. On the basis of a stakeholder interaction approach, following a set of logically sequenced questions to assess the availability, accessibility, affordability, reliability and continuity of usage of electricity, this study assesses the current status of electricity access in an urban poor area of Dhaka and identifies barriers to electricity access from both demand and supply side. Barriers specific recommendations are also suggested based on the experiences from field visit and the best practices outside Bangladesh are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Molla Shahadat Hossain Lipu; Md. Sazal Miah; M.A. Hannan; Aini Hussain; Mahidur R. Sarker; Afida Ayob; Mohamad Hanif Md Saad; Mastura Mahmud;À l'échelle mondiale, l'énergie éolienne connaît une croissance rapide et a reçu une attention considérable pour répondre aux besoins énergétiques mondiaux. Une prévision précise de l'énergie éolienne est cruciale pour assurer un fonctionnement stable et fiable du réseau électrique. Cependant, l'imprévisibilité et les caractéristiques stochastiques de l'énergie éolienne affectent négativement la planification et le fonctionnement du réseau. Pour répondre à ces préoccupations, une quantité substantielle de recherches a été menée pour introduire une approche efficace de prévision de l'énergie éolienne. Les approches d'intelligence artificielle (IA) ont démontré une haute précision, de meilleures performances de généralisation et une capacité d'apprentissage améliorée, elles peuvent donc être idéales pour gérer l'énergie éolienne instable, inflexible et intermittente. Récemment, les approches hybrides basées sur l'IA sont devenues populaires en raison de leur haute précision, de leur forte adaptabilité et de leurs performances améliorées. Ainsi, l'objectif de ce document de synthèse est de présenter les progrès récents des approches hybrides basées sur l'IA pour la prévision de l'énergie éolienne en mettant l'accent sur la classification, la structure, la force, la faiblesse et l'analyse des performances. De plus, cette revue explore les divers facteurs influents dans la mise en œuvre de la prévision de l'énergie éolienne hybride basée sur l'IA, y compris le prétraitement des données, la sélection des caractéristiques, l'ajustement des hyperparamètres, l'algorithme de formation, les fonctions d'activation et le processus d'évaluation. En outre, divers problèmes, défis et difficultés clés sont discutés pour identifier les limitations existantes et les lacunes de la recherche. Enfin, l'examen fournit quelques propositions futures sélectives qui seraient utiles aux industriels et aux chercheurs pour développer une approche hybride avancée basée sur l'IA pour des prévisions précises de l'énergie éolienne vers un fonctionnement durable du réseau. A nivel mundial, la energía eólica está creciendo rápidamente y ha recibido una gran consideración para cumplir con los requisitos energéticos mundiales. Una previsión precisa de la energía eólica es crucial para lograr un funcionamiento estable y fiable de la red eléctrica. Sin embargo, la imprevisibilidad y las características estocásticas de la energía eólica afectan negativamente a la planificación y operación de la red. Para abordar estas preocupaciones, se ha llevado a cabo una cantidad sustancial de investigación para introducir un enfoque eficiente de pronóstico de energía eólica. Los enfoques de Inteligencia Artificial (IA) han demostrado una alta precisión, un mejor rendimiento de generalización y una mejor capacidad de aprendizaje, por lo que pueden ser ideales para manejar energía eólica inestable, inflexible e intermitente. Recientemente, los enfoques híbridos basados en IA se han vuelto populares debido a su alta precisión, fuerte adaptabilidad y rendimiento mejorado. Por lo tanto, el objetivo de este documento de revisión es presentar el progreso reciente de los enfoques híbridos habilitados por IA para el pronóstico de la energía eólica, haciendo hincapié en la clasificación, la estructura, la fortaleza, la debilidad y el análisis del rendimiento. Además, esta revisión explora los diversos factores influyentes hacia las implementaciones de la previsión de energía eólica híbrida basada en IA, incluido el preprocesamiento de datos, la selección de características, el ajuste de hiperparámetros, el algoritmo de entrenamiento, las funciones de activación y el proceso de evaluación. Además, se discuten varios temas clave, desafíos y dificultades para identificar las limitaciones existentes y las brechas de investigación. Finalmente, la revisión ofrece algunas propuestas futuras selectivas que serían valiosas para que los industriales e investigadores desarrollen un enfoque híbrido avanzado basado en IA para pronosticar con precisión la energía eólica hacia la operación sostenible de la red. Globally, wind energy is growing rapidly and has received huge consideration to fulfill global energy requirements. An accurate wind power forecasting is crucial to achieve a stable and reliable operation of the power grid. However, the unpredictability and stochastic characteristics of wind power affect the grid planning and operation adversely. To address these concerns, a substantial amount of research has been carried out to introduce an efficient wind power forecasting approach. Artificial Intelligence (AI) approaches have demonstrated high precision, better generalization performance and improved learning capability, thus can be ideal to handle unstable, inflexible and intermittent wind power. Recently, AI-based hybrid approaches have become popular due to their high precision, strong adaptability and improved performance. Thus, the goal of this review paper is to present the recent progress of AI-enabled hybrid approaches for wind power forecasting emphasizing classification, structure, strength, weakness and performance analysis. Moreover, this review explores the various influential factors toward the implementations of AI-based hybrid wind power forecasting including data preprocessing, feature selection, hyperparameters adjustment, training algorithm, activation functions and evaluation process. Besides, various key issues, challenges and difficulties are discussed to identify the existing limitations and research gaps. Finally, the review delivers a few selective future proposals that would be valuable to the industrialists and researchers to develop an advanced AI-based hybrid approach for accurate wind power forecasting toward sustainable grid operation. على الصعيد العالمي، تنمو طاقة الرياح بسرعة وحظيت باهتمام كبير لتلبية متطلبات الطاقة العالمية. يعد التنبؤ الدقيق بطاقة الرياح أمرًا بالغ الأهمية لتحقيق تشغيل مستقر وموثوق لشبكة الطاقة. ومع ذلك، فإن عدم القدرة على التنبؤ والخصائص العشوائية لطاقة الرياح تؤثر سلبًا على تخطيط الشبكة وتشغيلها. لمعالجة هذه المخاوف، تم إجراء قدر كبير من الأبحاث لإدخال نهج فعال للتنبؤ بطاقة الرياح. أظهرت مناهج الذكاء الاصطناعي (AI) دقة عالية وأداء تعميم أفضل وقدرة تعلم محسنة، وبالتالي يمكن أن تكون مثالية للتعامل مع طاقة الرياح غير المستقرة وغير المرنة والمتقطعة. في الآونة الأخيرة، أصبحت الأساليب الهجينة القائمة على الذكاء الاصطناعي شائعة بسبب دقتها العالية وقدرتها القوية على التكيف وأدائها المحسن. وبالتالي، فإن الهدف من ورقة المراجعة هذه هو تقديم التقدم الأخير للنهج الهجينة المدعومة بالذكاء الاصطناعي للتنبؤ بطاقة الرياح مع التأكيد على التصنيف والهيكل والقوة والضعف وتحليل الأداء. علاوة على ذلك، تستكشف هذه المراجعة العوامل المؤثرة المختلفة نحو تنفيذ تنبؤات طاقة الرياح الهجينة القائمة على الذكاء الاصطناعي بما في ذلك المعالجة المسبقة للبيانات، واختيار الميزات، وتعديل المعلمات الفائقة، وخوارزمية التدريب، ووظائف التنشيط، وعملية التقييم. إلى جانب ذلك، تتم مناقشة العديد من القضايا والتحديات والصعوبات الرئيسية لتحديد القيود والثغرات البحثية الحالية. أخيرًا، تقدم المراجعة بعض المقترحات المستقبلية الانتقائية التي ستكون ذات قيمة للصناعيين والباحثين لتطوير نهج هجين متقدم قائم على الذكاء الاصطناعي للتنبؤ الدقيق بطاقة الرياح نحو تشغيل الشبكة المستدامة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3097102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3097102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Md. Ashraful Islam; M.M. Naushad Ali; Abdulla Al Mamun; Molla Shahadat Hossain; Md. Hasan Maruf; A.S.M. Shihavuddin;handle: 10072/435098
Hybrid renewable energy systems have acquired attention worldwide for their ability to harness multiple renewable sources parallelly like solar, wind, and hydropower, presenting numerous advantages. Bangladesh is forced to rely on the traditional fossil fuel-powered power generation infrastructure in order to meet the nation's increasing need for electricity. The goal of this paper is to improve the percentage of renewable energy in Bangladesh's energy landscape by addressing the technical, economic, and environmental elements of building a specialized hybrid system at Patenga Sea Beach through a methodical approach. This study is the first to pinpoint and address Patenga Sea Beach's limits in light of Shah Amanat International Airport's nearby location in Chittagong. In order to build the suggested system, a daily load demand of 1000 kWh and an annual peak demand of 53.57 kW were taken into account. The analysis shows that this system has a levelized cost of energy (LCOE) of 0.03$, generating 4,604.591 MWh of power annually. Findings from HOMER reveal an initial capital outlay of $350,688 for initial capital investment, with an annual O&M cost of $3,821, contributing to its cost-effectiveness. During the span of its lifetime, the hybrid system can also avoid 5,767 tons of CO2. The simulation program PVsyst has been utilized to assess the PV system-specific performance, viability, and outcomes. According to the PVsyst evaluation, the PV system has an 89 % system performance ratio, a 0.017$ levelized cost of energy, and a break-even period of only 6.6 years. The sensitivity analysis examines renewable resources, factoring in climate change's effects on solar irradiation, wind speed, replacement cost, and operational expenses. It validates the hybrid system's viability across various environmental scenarios, demonstrating resilience to changes in renewable resource costs and availability. The suggested hybrid system can be placed to minimize costs associated with energy generation, circumvent structural and ...
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/435098Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and Management: XArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2024.100605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/435098Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and Management: XArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2024.100605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 DenmarkPublisher:Elsevier BV Hannan, M. A.; Lipu, M. S.Hossain; Ker, Pin Jern; Begum, R. A.; Agelidis, Vasilios G.; Blaabjerg, F.;Global energy consumption is increasing at a dramatic rate and will likely continue to do so. The major source of energy is still fossil fuel, which has resulted in the well-documented problem of global warming due to the emission of greenhouse gases from the burning of such fuel. Climate change and global warming are among the crucial and complex issues encountered by the world today, and they require an immediate solution. Technological innovation is the key to ensuring energy security without causing emissions and providing efficient cost-effective energy solutions. Power electronic technologies offer high reliability and renewable energy conversion efficiency, thus contributing to energy conservation, improving energy efficiency, and helping in the mitigation of harmful global emissions. This review focuses on various aspects of power electronic technologies and their importance in tackling carbon emission and global warming problems. The key topologies of power electronic converters are explained based on types, control difficulties, benefits, and drawbacks. Power electronic controllers utilized for energy conversion are comprehensively reviewed with regard to their structure, algorithm complexity, strengths and weaknesses, and mathematical modeling. The review focuses on power converters and controllers used in different applications and highlight their contributions to energy conservation, increasing the share of renewable energy sources, and mitigating emissions. Moreover, existing research gaps, issues, and challenges are identified. The insights provided by are expected to lead to the enhanced development of advanced power electronic converters and controllers for sustainable energy conversion. Such development can reduce carbon emissions and mitigate global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Mahammad A. Hannan; Molla S. Hossain Lipu; Aini Hussain; Mohamad H. Saad; Afida Ayob;The state of charge (SOC) is a critical evaluation index of battery residual capacity. The significance of an accurate SOC estimation is great for a lithium-ion battery to ensure its safe operation and to prevent from over-charging or over-discharging. However, to estimate an accurate capacity of SOC of the lithium-ion battery has become a major concern for the electric vehicle (EV) industry. Therefore, numerous researches are being conducted to address the challenges and to enhance the battery performance. The main objective of this paper is to develop an accurate SOC estimation approach for a lithium-ion battery by improving back-propagation neural network (BPNN) capability using backtracking search algorithm (BSA). BSA optimization is utilized to improve the accuracy and robustness of BPNN model by finding the optimal value of hidden layer neurons and learning rate. In this paper, Dynamic Stress Test and Federal Urban Driving Schedule drive profiles are applied for testing the model at three different temperatures. The obtained results of the BPNN based BSA model are compared with the radial basis function neural network, generalized regression neural network and extreme learning machine model using statistical error values of root mean square error, mean absolute error, mean absolute percentage error, and SOC error to check and validate the model performance. The obtained results show that the BPNN based BSA model outperforms other neural network models in estimating SOC with high accuracy under different EV profiles and temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2797976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2797976&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Md Hasan Maruf; Sameya Afrin July; Mamun Rabbani; Shafrida Sahrani; Molla Shahadat Hossain Lipu; Mahidur R. Sarker; Ratil H. Ashique; Md. Shahrial Kabir; A. S. M. Shihavuddin;doi: 10.3390/su15065452
This paper explores the energy management of a natural gas-based thermal power plant, with a focus on improving its efficiency, sustainability, and economic feasibility. The study uses the Ashuganj Power Station Company Limited (APSCL) in Bangladesh as a case study. To evaluate the efficiency of the APSCL, both energy and exergy perspectives are considered, and sustainability is assessed through exergetic parameters. The plant’s economic feasibility is analyzed based on its fuel costs and operational losses. The results of the study indicate that the energy and exergy efficiencies of the APSCL vary from 32.97% to 33.21% and from 32.63% to 32.87%, respectively, for steam turbines and from 39.77% to 56.98% and from 39.36% to 56.40%, respectively, for combined cycle power plants (CCPP) during 2016–2021. The slightly lower efficiency in exergy calculations accounts for the system loss incurred over time, which is often omitted in efficiency calculations using energy parameters. To measure the sustainability of the APSCL, eight key indicators are used: the depletion number, exergy sustainable index, cumulative exergy loss, relative irreversibility, lack of production, the wasted exergy ratio, environmental effect factor, and improvement potential. The results indicate that APSCL still has opportunities for improvement in terms of sustainability, with 50% of the fuel being depleted in the plant, contributing to a sustainable index of 2.00 and cumulative exergy loss varying between 48.59 and 21.17. Regarding financial costs and losses, APSCL has experienced an increasing trend in the price of electricity generated. However, by implementing intelligent maintenance practices and upgrading equipment in a timely manner, it is possible to minimize costs and increase exergy output, reducing the per-unit fuel requirement for electricity production and the global carbon footprint significantly.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5452/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/6/5452/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065452&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2020Publisher:IEEE Muhamad Mansor; Pin Jern Ker; Dickson Neoh Tze How; M. S. Hossain Lipu; Mahammad A. Hannan; Kashem M. Muttaqi;The state of charge (SOC) is a crucial indicator of a Li-ion battery management system (BMS). A BMS with a good SOC assessment can dramatically improve the lifespan of the battery and ensure the safety of the end-user. With deep learning making tremendous strides in many other fields, this study aims to provide an empirical evaluation of commonly used deep learning methods on the task of SOC estimation. We propose the use of two-hidden-layer gated recurrent units (GRU) to estimate the SOC at various ambient temperatures. In this work, we conducted two experiment setups to showcase the capability of the proposed GRU model. In the first setup, the GRU was trained on the DST, BJDST and US06 drive cycle and evaluated the FUDS drive cycle upon convergence. The same procedure was repeated with the second setup except the GRU was trained on the DST, BJDST and FUDS drive cycle and evaluated on the US06 drive cycle. In both experiment setups, the proposed GRU was evaluated on a novel drive cycle that it has not encountered during the training phase. We show that a two-hidden-layer GRU with appropriate hyperparameter combination and training methodology can reliably estimate the SOC of novel drive cycles at various ambient temperatures in comparison with other deep learning methods such as simple recurrent network (SRNN), Long Short-Term Memory (LSTM), 1D Residual Network (Resnet), 1D Visual Geometry Group Network (VGG) and the Multilayer Perceptron (MLP). The proposed GRU achieves 2.3% RMSE on the FUDS drive cycle and 1.2% RMSE on the US06 drive cycle outperforming all other models.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/ias449...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias44978.2020.9334824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/ias449...Conference object . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias44978.2020.9334824&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Tarek Abedin; M. Shahadat Hossain Lipu; Mahammad A. Hannan; Pin Jern Ker; Safwan A. Rahman; Chong Tak Yaw; Sieh K. Tiong; Kashem M. Muttaqi;doi: 10.3390/en14164829
High-voltage direct current (HVDC) has received considerable attention due to several advantageous features such as minimum transmission losses, enhanced stability, and control operation. An appropriate model of HVDC is necessary to assess the operating conditions as well as to analyze the transient and steady-state stabilities integrated with the AC networks. Nevertheless, the construction of an HVDC model is challenging due to the high computational cost, which needs huge ranges of modeling experience. Therefore, advanced dynamic modeling of HVDC is necessary to improve stability with minimum power loss. This paper presents a comprehensive review of the various dynamic modeling of the HVDC transmission system. In line with this matter, an in-depth investigation of various HVDC mathematical models is carried out including average-value modeling (AVM), voltage source converter (VSC), and line-commutated converter (LCC). Moreover, numerous stability assessment models of HVDC are outlined with regard to stability improvement models, current-source system stability, HVDC link stability, and steady-state rotor angle stability. In addition, the various control schemes of LCC-HVDC systems and modular multilevel converter- multi-terminal direct current (MMC-MTDC) are highlighted. This paper also identifies the key issues, the problems of the existing HVDC models as well as providing some selective suggestions for future improvement. All the highlighted insights in this review will hopefully lead to increased efforts toward the enhancement of the modeling for the HVDC system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) K. Parvin; M. S. Hossain Lipu; M. A. Hannan; Majid A. Abdullah; Ker Pin Jern; R. A. Begum; Muhamad Mansur; Kashem M. Muttaqi; T. M. Indra Mahlia; Zhao Yang Dong;Les bâtiments représentent une quantité importante de consommation d'énergie, ce qui entraîne des problèmes d'émissions mondiales et de changement climatique. Ainsi, la gestion de l'énergie dans un bâtiment est de plus en plus explorée en raison de son potentiel important de réduction des dépenses globales d'électricité pour les consommateurs et d'atténuation des émissions de carbone. En ligne avec cela, un plus grand contrôle et une optimisation de la gestion de l'énergie intégrée aux ressources énergétiques renouvelables sont nécessaires pour améliorer l'efficacité énergétique des bâtiments tout en satisfaisant le confort de l'environnement intérieur. Même si des mesures sont prises pour réduire la consommation d'énergie dans les bâtiments avec plusieurs techniques d'optimisation et de contrôle, certains problèmes restent non résolus. Par conséquent, ce travail fournit un examen complet des méthodes de contrôle conventionnelles et intelligentes en mettant l'accent sur leur classification, leurs caractéristiques, leur configuration, leurs avantages et leurs inconvénients. Cet examen examine de manière critique les différents objectifs et contraintes d'optimisation en ce qui concerne la gestion du confort, la consommation d'énergie et la planification. En outre, la revue décrit les différentes approches méthodologiques des algorithmes d'optimisation utilisés dans la gestion de l'énergie des bâtiments. Les contributions du contrôleur et de l'optimisation dans la gestion de l'énergie des bâtiments avec la relation des objectifs de développement durable (ODD) sont expliquées rigoureusement. Des discussions sur les principaux défis des méthodes existantes sont présentées afin d'identifier les lacunes pour les recherches futures. L'examen fournit des orientations futures efficaces qui seraient bénéfiques pour les chercheurs et les industriels afin de concevoir un contrôleur optimisé efficacement pour la gestion de l'énergie du bâtiment en vue de cibler les ODD. Los edificios representan una cantidad significativa de consumo de energía que conduce a los problemas de las emisiones globales y el cambio climático. Por lo tanto, la gestión de la energía en un edificio se explora cada vez más debido a su importante potencial para reducir los gastos generales de electricidad para los consumidores y mitigar las emisiones de carbono. En línea con ello, se requiere un mayor control y optimización de la gestión energética integrada con los recursos energéticos renovables para mejorar la eficiencia energética del edificio a la vez que se satisface el confort del entorno interior. A pesar de que se están tomando medidas para reducir el consumo de energía en edificios con varias técnicas de optimización y control, algunos problemas siguen sin resolverse. Por lo tanto, este trabajo proporciona una revisión exhaustiva de los métodos de control convencionales e inteligentes con énfasis en su clasificación, características, configuración, beneficios e inconvenientes. Esta revisión investiga críticamente los diferentes objetivos y restricciones de optimización con respecto a la gestión del confort, el consumo de energía y la programación. Además, la revisión describe los diferentes enfoques metodológicos de los algoritmos de optimización utilizados en la gestión energética de los edificios. Se explican de forma rigurosa los aportes del controlador y la optimización en la gestión energética del edificio con la relación de los objetivos de desarrollo sostenible (ODS). Se presentan discusiones sobre los desafíos clave de los métodos existentes para identificar las brechas para futuras investigaciones. La revisión ofrece algunas direcciones futuras efectivas que serían beneficiosas para los investigadores e industriales para diseñar un controlador optimizado de manera eficiente para la gestión de la energía de los edificios hacia la consecución de los ODS. Buildings account for a significant amount of energy consumption leading to the issues of global emissions and climate change. Thus, energy management in a building is increasingly explored due to its significant potential in reducing the overall electricity expenses for the consumers and mitigating carbon emissions. In line with that, the greater control and optimization of energy management integrated with renewable energy resources is required to improve building energy efficiency while satisfying indoor environment comfort. Even though actions are being taken to reduce the energy consumption in buildings with several optimization and controller techniques, yet some issues remain unsolved. Therefore, this work provides a comprehensive review of the conventional and intelligent control methods with emphasis on their classification, features, configuration, benefits, and drawbacks. This review critically investigates the different optimization objectives and constraints with respect to comfort management, energy consumption, and scheduling. Furthermore, the review outlines the different methodological approaches to optimization algorithms used in building energy management. The contributions of controller and optimization in building energy management with the relation of sustainable development goals (SDGs) are explained rigorously. Discussions on the key challenges of the existing methods are presented to identify the gaps for future research. The review delivers some effective future directions that would be beneficial to the researchers and industrialists to design an efficiently optimized controller for building energy management toward targeting SDGs. تمثل المباني كمية كبيرة من استهلاك الطاقة مما يؤدي إلى قضايا الانبعاثات العالمية وتغير المناخ. وبالتالي، يتم استكشاف إدارة الطاقة في المبنى بشكل متزايد بسبب إمكاناته الكبيرة في تقليل نفقات الكهرباء الإجمالية للمستهلكين والتخفيف من انبعاثات الكربون. وتماشياً مع ذلك، يلزم زيادة التحكم في إدارة الطاقة المتكاملة مع موارد الطاقة المتجددة وتحسينها لتحسين كفاءة استخدام الطاقة في المباني مع إرضاء راحة البيئة الداخلية. على الرغم من اتخاذ إجراءات لتقليل استهلاك الطاقة في المباني باستخدام العديد من تقنيات التحسين والتحكم، إلا أن بعض المشكلات لا تزال دون حل. لذلك، يوفر هذا العمل مراجعة شاملة لأساليب التحكم التقليدية والذكية مع التركيز على تصنيفها وميزاتها وتكوينها وفوائدها وعيوبها. تبحث هذه المراجعة بشكل نقدي في أهداف وقيود التحسين المختلفة فيما يتعلق بإدارة الراحة واستهلاك الطاقة والجدولة. علاوة على ذلك، تحدد المراجعة الأساليب المنهجية المختلفة لخوارزميات التحسين المستخدمة في بناء إدارة الطاقة. يتم شرح مساهمات المراقب والتحسين في بناء إدارة الطاقة مع العلاقة بين أهداف التنمية المستدامة (SDGs) بدقة. يتم تقديم مناقشات حول التحديات الرئيسية للطرق الحالية لتحديد الثغرات للبحث في المستقبل. تقدم المراجعة بعض الاتجاهات المستقبلية الفعالة التي ستكون مفيدة للباحثين والصناعيين لتصميم وحدة تحكم محسنة بكفاءة لبناء إدارة الطاقة نحو استهداف أهداف التنمية المستدامة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3065087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3065087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Shaheer Ansari; Afida Ayob; Molla S. Hossain Lipu; Mohamad Hanif Md Saad; Aini Hussain;doi: 10.3390/su13158120
Solar photovoltaic (PV) is one of the prominent sustainable energy sources which shares a greater percentage of the energy generated from renewable resources. As the need for solar energy has risen tremendously in the last few decades, monitoring technologies have received considerable attention in relation to performance enhancement. Recently, the solar PV monitoring system has been integrated with a wireless platform that comprises data acquisition from various sensors and nodes through wireless data transmission. However, several issues could affect the performance of solar PV monitoring, such as large data management, signal interference, long-range data transmission, and security. Therefore, this paper comprehensively reviews the progress of several solar PV-based monitoring technologies focusing on various data processing modules and data transmission protocols. Each module and transmission protocol-based monitoring technology is investigated with regard to type, design, implementations, specifications, and limitations. The critical discussion and analysis are carried out with respect to configurations, parameters monitored, software, platform, achievements, and suggestions. Moreover, various key issues and challenges are explored to identify the existing research gaps. Finally, this review delivers selective proposals for future research works. All the highlighted insights of this review will hopefully lead to increased efforts toward the enhancement of the monitoring technologies in future sustainable solar PV applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:AIP Publishing Authors: Molla Shahadat Hossain Lipu; Arif Md. Waliullah Bhuiyan;doi: 10.1063/1.4896697
Dhaka, the capital city of Bangladesh, is one of the fastest growing cities in Southern Asia, having population of more than 13 million, and is expected to accommodate more than 20 million by 2025. This growth has been accompanied by the growth of urban slums and the subsequent challenges to access basic urban services like water, sanitation, clean energy, and transport for the urban poor. Despite its importance for basic survival, electricity supply is not recognized as a basic urban service, as a result of which, the poverty alleviation and basic infrastructure provision programs have not addressed this issue completely. On the basis of a stakeholder interaction approach, following a set of logically sequenced questions to assess the availability, accessibility, affordability, reliability and continuity of usage of electricity, this study assesses the current status of electricity access in an urban poor area of Dhaka and identifies barriers to electricity access from both demand and supply side. Barriers specific recommendations are also suggested based on the experiences from field visit and the best practices outside Bangladesh are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4896697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Molla Shahadat Hossain Lipu; Md. Sazal Miah; M.A. Hannan; Aini Hussain; Mahidur R. Sarker; Afida Ayob; Mohamad Hanif Md Saad; Mastura Mahmud;À l'échelle mondiale, l'énergie éolienne connaît une croissance rapide et a reçu une attention considérable pour répondre aux besoins énergétiques mondiaux. Une prévision précise de l'énergie éolienne est cruciale pour assurer un fonctionnement stable et fiable du réseau électrique. Cependant, l'imprévisibilité et les caractéristiques stochastiques de l'énergie éolienne affectent négativement la planification et le fonctionnement du réseau. Pour répondre à ces préoccupations, une quantité substantielle de recherches a été menée pour introduire une approche efficace de prévision de l'énergie éolienne. Les approches d'intelligence artificielle (IA) ont démontré une haute précision, de meilleures performances de généralisation et une capacité d'apprentissage améliorée, elles peuvent donc être idéales pour gérer l'énergie éolienne instable, inflexible et intermittente. Récemment, les approches hybrides basées sur l'IA sont devenues populaires en raison de leur haute précision, de leur forte adaptabilité et de leurs performances améliorées. Ainsi, l'objectif de ce document de synthèse est de présenter les progrès récents des approches hybrides basées sur l'IA pour la prévision de l'énergie éolienne en mettant l'accent sur la classification, la structure, la force, la faiblesse et l'analyse des performances. De plus, cette revue explore les divers facteurs influents dans la mise en œuvre de la prévision de l'énergie éolienne hybride basée sur l'IA, y compris le prétraitement des données, la sélection des caractéristiques, l'ajustement des hyperparamètres, l'algorithme de formation, les fonctions d'activation et le processus d'évaluation. En outre, divers problèmes, défis et difficultés clés sont discutés pour identifier les limitations existantes et les lacunes de la recherche. Enfin, l'examen fournit quelques propositions futures sélectives qui seraient utiles aux industriels et aux chercheurs pour développer une approche hybride avancée basée sur l'IA pour des prévisions précises de l'énergie éolienne vers un fonctionnement durable du réseau. A nivel mundial, la energía eólica está creciendo rápidamente y ha recibido una gran consideración para cumplir con los requisitos energéticos mundiales. Una previsión precisa de la energía eólica es crucial para lograr un funcionamiento estable y fiable de la red eléctrica. Sin embargo, la imprevisibilidad y las características estocásticas de la energía eólica afectan negativamente a la planificación y operación de la red. Para abordar estas preocupaciones, se ha llevado a cabo una cantidad sustancial de investigación para introducir un enfoque eficiente de pronóstico de energía eólica. Los enfoques de Inteligencia Artificial (IA) han demostrado una alta precisión, un mejor rendimiento de generalización y una mejor capacidad de aprendizaje, por lo que pueden ser ideales para manejar energía eólica inestable, inflexible e intermitente. Recientemente, los enfoques híbridos basados en IA se han vuelto populares debido a su alta precisión, fuerte adaptabilidad y rendimiento mejorado. Por lo tanto, el objetivo de este documento de revisión es presentar el progreso reciente de los enfoques híbridos habilitados por IA para el pronóstico de la energía eólica, haciendo hincapié en la clasificación, la estructura, la fortaleza, la debilidad y el análisis del rendimiento. Además, esta revisión explora los diversos factores influyentes hacia las implementaciones de la previsión de energía eólica híbrida basada en IA, incluido el preprocesamiento de datos, la selección de características, el ajuste de hiperparámetros, el algoritmo de entrenamiento, las funciones de activación y el proceso de evaluación. Además, se discuten varios temas clave, desafíos y dificultades para identificar las limitaciones existentes y las brechas de investigación. Finalmente, la revisión ofrece algunas propuestas futuras selectivas que serían valiosas para que los industriales e investigadores desarrollen un enfoque híbrido avanzado basado en IA para pronosticar con precisión la energía eólica hacia la operación sostenible de la red. Globally, wind energy is growing rapidly and has received huge consideration to fulfill global energy requirements. An accurate wind power forecasting is crucial to achieve a stable and reliable operation of the power grid. However, the unpredictability and stochastic characteristics of wind power affect the grid planning and operation adversely. To address these concerns, a substantial amount of research has been carried out to introduce an efficient wind power forecasting approach. Artificial Intelligence (AI) approaches have demonstrated high precision, better generalization performance and improved learning capability, thus can be ideal to handle unstable, inflexible and intermittent wind power. Recently, AI-based hybrid approaches have become popular due to their high precision, strong adaptability and improved performance. Thus, the goal of this review paper is to present the recent progress of AI-enabled hybrid approaches for wind power forecasting emphasizing classification, structure, strength, weakness and performance analysis. Moreover, this review explores the various influential factors toward the implementations of AI-based hybrid wind power forecasting including data preprocessing, feature selection, hyperparameters adjustment, training algorithm, activation functions and evaluation process. Besides, various key issues, challenges and difficulties are discussed to identify the existing limitations and research gaps. Finally, the review delivers a few selective future proposals that would be valuable to the industrialists and researchers to develop an advanced AI-based hybrid approach for accurate wind power forecasting toward sustainable grid operation. على الصعيد العالمي، تنمو طاقة الرياح بسرعة وحظيت باهتمام كبير لتلبية متطلبات الطاقة العالمية. يعد التنبؤ الدقيق بطاقة الرياح أمرًا بالغ الأهمية لتحقيق تشغيل مستقر وموثوق لشبكة الطاقة. ومع ذلك، فإن عدم القدرة على التنبؤ والخصائص العشوائية لطاقة الرياح تؤثر سلبًا على تخطيط الشبكة وتشغيلها. لمعالجة هذه المخاوف، تم إجراء قدر كبير من الأبحاث لإدخال نهج فعال للتنبؤ بطاقة الرياح. أظهرت مناهج الذكاء الاصطناعي (AI) دقة عالية وأداء تعميم أفضل وقدرة تعلم محسنة، وبالتالي يمكن أن تكون مثالية للتعامل مع طاقة الرياح غير المستقرة وغير المرنة والمتقطعة. في الآونة الأخيرة، أصبحت الأساليب الهجينة القائمة على الذكاء الاصطناعي شائعة بسبب دقتها العالية وقدرتها القوية على التكيف وأدائها المحسن. وبالتالي، فإن الهدف من ورقة المراجعة هذه هو تقديم التقدم الأخير للنهج الهجينة المدعومة بالذكاء الاصطناعي للتنبؤ بطاقة الرياح مع التأكيد على التصنيف والهيكل والقوة والضعف وتحليل الأداء. علاوة على ذلك، تستكشف هذه المراجعة العوامل المؤثرة المختلفة نحو تنفيذ تنبؤات طاقة الرياح الهجينة القائمة على الذكاء الاصطناعي بما في ذلك المعالجة المسبقة للبيانات، واختيار الميزات، وتعديل المعلمات الفائقة، وخوارزمية التدريب، ووظائف التنشيط، وعملية التقييم. إلى جانب ذلك، تتم مناقشة العديد من القضايا والتحديات والصعوبات الرئيسية لتحديد القيود والثغرات البحثية الحالية. أخيرًا، تقدم المراجعة بعض المقترحات المستقبلية الانتقائية التي ستكون ذات قيمة للصناعيين والباحثين لتطوير نهج هجين متقدم قائم على الذكاء الاصطناعي للتنبؤ الدقيق بطاقة الرياح نحو تشغيل الشبكة المستدامة.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3097102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2021.3097102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustraliaPublisher:Elsevier BV Md. Ashraful Islam; M.M. Naushad Ali; Abdulla Al Mamun; Molla Shahadat Hossain; Md. Hasan Maruf; A.S.M. Shihavuddin;handle: 10072/435098
Hybrid renewable energy systems have acquired attention worldwide for their ability to harness multiple renewable sources parallelly like solar, wind, and hydropower, presenting numerous advantages. Bangladesh is forced to rely on the traditional fossil fuel-powered power generation infrastructure in order to meet the nation's increasing need for electricity. The goal of this paper is to improve the percentage of renewable energy in Bangladesh's energy landscape by addressing the technical, economic, and environmental elements of building a specialized hybrid system at Patenga Sea Beach through a methodical approach. This study is the first to pinpoint and address Patenga Sea Beach's limits in light of Shah Amanat International Airport's nearby location in Chittagong. In order to build the suggested system, a daily load demand of 1000 kWh and an annual peak demand of 53.57 kW were taken into account. The analysis shows that this system has a levelized cost of energy (LCOE) of 0.03$, generating 4,604.591 MWh of power annually. Findings from HOMER reveal an initial capital outlay of $350,688 for initial capital investment, with an annual O&M cost of $3,821, contributing to its cost-effectiveness. During the span of its lifetime, the hybrid system can also avoid 5,767 tons of CO2. The simulation program PVsyst has been utilized to assess the PV system-specific performance, viability, and outcomes. According to the PVsyst evaluation, the PV system has an 89 % system performance ratio, a 0.017$ levelized cost of energy, and a break-even period of only 6.6 years. The sensitivity analysis examines renewable resources, factoring in climate change's effects on solar irradiation, wind speed, replacement cost, and operational expenses. It validates the hybrid system's viability across various environmental scenarios, demonstrating resilience to changes in renewable resource costs and availability. The suggested hybrid system can be placed to minimize costs associated with energy generation, circumvent structural and ...
Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/435098Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and Management: XArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2024.100605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Griffith University:... arrow_drop_down Griffith University: Griffith Research OnlineArticle . 2024License: CC BYFull-Text: https://hdl.handle.net/10072/435098Data sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and Management: XArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2024.100605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu