- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Youssef Hassan; Mohamed Orabi; Abdulaziz Alshreef; Omar M. Al-Rabghi; Badr A. Habeebullah; Abdelali El Aroudi; Mohamed A. Ismeil;doi: 10.3390/en13123159
The increase in operating temperature of PV generators leads to degradation of their performance. These adverse effects of high temperatures are considered as one of the most important problems that solar panel operation faces in hot weather areas. A lot of research has been undertaken to study this aspect and find ways of limiting the harm caused by such high temperatures. To overcome this harm and to maintain the operating temperature of the PV cells within the optimum range specified by manufacturers, cooling the solar panels often becomes indispensable. This paper discusses the heat transfer through the solar panel layers and studies the effect of high temperature on the solar panel performance in a hot desert environment. It also presents the development of a new solar panel structure viz. by installing an aluminum heat sink to reduce the effect of temperature rise and thus improve the solar panel performance. The study focuses on a pole-mounted solar panel for a street lighting apparatus in extremely hot desert conditions with fluctuating wind speeds. It will be shown that adding an aluminum heat sink to the solar panel bottom mitigates the effect of increased temperature and hence modifies the solar panel operating point by increasing both the efficiency and the lifetime. The solar cell temperature is decreased by 16.4% as a result of the aluminum heat sink installation on the solar panel back sheet and consequently, the accumulated energy produced by the the solar panel is increased by 13.23% per day.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3159/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3159/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Alexandra Blanch-Fortuna; David Zambrano-Prada; Oswaldo López-Santos; Abdelali El Aroudi; +2 AuthorsAlexandra Blanch-Fortuna; David Zambrano-Prada; Oswaldo López-Santos; Abdelali El Aroudi; Luis Vázquez-Seisdedos; Luis Martinez-Salamero;doi: 10.3390/en17061393
This paper presents a two-level hierarchical control method for the power distribution between the hybrid energy storage system (HESS) and the main dc bus of a microgrid for ultrafast charging of electric vehicles (EVs). The HESS is composed of a supercapacitor and a battery and is an essential part to fulfill the charging demand of EVs in a microgrid made up of a 220 VRMS ac bus, two dc buses of 600 V and 1500 V, respectively, and four charging points. A state machine defines the four operating modes of the HESS and establishes the conditions for the corresponding transitions among them, namely, charging the battery and the supercapacitor from the bus, injecting the current from the HESS into the 1500 V dc bus to ensure the power balance in the microgrid, regulating the bus voltage, and establishing the disconnection mode. The primary level of the control system regulates the current and voltage of the battery, supercapacitor, and dc bus, while the secondary level establishes the operating mode of the HESS and provides the appropriate references to the primary level. In the primary level, sliding mode control (SMC) is used in both the battery and supercapacitor in the inner loop of a cascade control that implements the standard constant current–constant voltage (CC-CV) charging protocol. In the same level, linear control is applied in the CV phase of the protocol and for bus voltage regulation or the current injection into the bus. PSIM simulations of the operating modes and their corresponding transitions verify the theoretical predictions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Abdelali El Aroudi; Blanca Areli Martínez-Treviño; Enric Vidal-Idiarte; Angel Cid-Pastor;doi: 10.3390/en12061055
This paper proposes a digital sliding-mode controller for a DC-DC boost converter under constant power-loading conditions. The controller has been designed in two steps: the first step is to reach the sliding-mode regime while ensuring inrush current limiting; and the second one is to move the system to the desired operating point. By imposing sliding-mode regime, the equivalent control and the discrete-time large-signal dynamic model of this system are derived. The analysis shows that unlike with a resistive load, the boost converter under a fixed-frequency digital sliding-mode current control with external voltage loop open and loaded by a constant power load, is unstable. Furthermore, as with a resistive load, the system presents a right-half plane zero in the control-to-output transfer function. After that, an outer controller is designed in the z-domain for system stabilization and output voltage regulation. The results show that the system exhibits good performance in startup in terms of inrush current limiting and in transient response due to load and input voltage disturbances. Numerical simulations from a detailed switched model are in good agreement with the theoretical predictions. An experimental prototype is implemented to verify the mathematical analysis and the numerical simulation, which results in a perfect agreement in small-signal and steady-state behavior but also in a small discrepancy in the current limitation due a small propagation delay. Some efficient solutions have been proposed to mitigate the inrush current in the experimental results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1055/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1055/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gorg Abdelmassih; Mohammed Al-Numay; Abdelali El Aroudi;doi: 10.3390/en14196127
In this study, we analyze observational and predicted wind energy datasets of the lower 48 states of the United States, and we intend to predict an optimal map for new turbines placement. Several approaches have been implemented to investigate the correlation between current wind power stations, power capacity, wind seasonality, and site selection. The correlation between stations is carried out according to Pearson correlation coefficient approach joined with the spherical law of cosines to calculate the distances. The high correlation values between the stations spaced within a distance of 100 km show that installing more turbines close to the current farms would assist the electrical grid. The total power capacity indicates that the current wind turbines are utilizing approximately 70% of the wind resources available in the turbine’s sites. The Power spectrum of Fourier’s spectral density indicates main, secondary, and harmonic frequencies correspond to yearly, semiyearly, and daily wind-speed periodic patterns. We propose and validate a numerical approach based on a novel fuzzy logic framework for wind turbines placement. Map optimizations are fitted considering different parameters presented in wind speed, land use, price, and elevation. Map optimization results show that suitable sites for turbines placement are in general agreement with the direction of the correlation approach.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Enric Vidal-Idiarte; Carlos Restrepo; Abdelali El Aroudi; Javier Calvente; Roberto Giral;doi: 10.3390/en12142738
This paper presents the analysis and design of a PWM nonlinear digital control of a buck converter based on input-output linearization. The control employs a discrete-time bilinear model of the power converter for continuous conduction mode operation (CCM) to create an internal current control loop wherein the inductor current error with respect to its reference decreases to zero in geometric progression. This internal loop is as a constant frequency discrete-time sliding mode control loop with a parameter that allows adjusting how fast the error is driven to zero. Subsequently, an outer voltage loop designed by linear techniques provides the reference of the inner current loop to regulate the converter output voltage. The two-loop control offers a fast transient response and a high regulation degree of the output voltage in front of reference changes and disturbances in the input voltage and output load. The experimental results are in good agreement with both theoretical predictions and PSIM simulations.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2738/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2738/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Maria Cortada-Torbellino; Abdelali El Aroudi; Hugo Valderrama-Blavi;doi: 10.3390/en16052458
This article constitutes a relatively new perspective that has emerged from the need to reduce environmental pollution from internal combustion engine vehicles (ICEVs) by reinforcing the fleet of electric vehicles (EVs) on the road. Future requirements to exclusively use zero-emission vehicles have resulted in the necessity of enhancing the testing and monitoring process for EVs in order to release reliable devices. The unpredictable response of lithium-ion batteries (LIBS), future lack of raw materials, and inconsistencies in the present regulations must be reviewed and understood in order to develop enhanced batteries. This article aims to outline the future perspective of nonconventional vehicles monopolizing the roads by year 2035 in order to eradicate CO2 emissions by year 2050.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Seyedamin Valedsaravi; Abdelali El Aroudi; Jose A. Barrado-Rodrigo; Walid Issa; Luis Martínez-Salamero;doi: 10.3390/en15103756
Load and supply parameters may be uncertain in microgrids (MGs) due for instance to the intermittent nature of renewable energy sources among others. Guaranteeing reliable and stable MGs despite parameter uncertainties is crucial for their correct operation. Their stability and dynamical features are directly related to the controllers’ parameters and power-sharing coefficients. Hence, to maintain power good quality within the desirable range of system parameters and to have a satisfactory response to sudden load changes, careful selection of the controllers and power-sharing coefficients are necessary. In this paper, a simple design approach for the optimal design of controllers’ parameters is presented in an islanded MG. To that aim, an optimization problem is formulated based on a small-signal state-space model and solved by three different optimization techniques including particle swarm optimization (PSO), genetic algorithm (GA), and a proposed approach based on the combination of both PSO and GA. The optimized coefficients are selected to guarantee desirable static and dynamic responses in a wide range of operations regardless of the number of inverters, system configuration, output impedance differences, and load types. Through the proposed design and tuning method, the performance of the MG is improved as compared to those obtained using state-of-art techniques. This fact is demonstrated by using numerical simulations performed on a detailed model implemented in PSIM© software.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3756/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3756/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Ahmed Shawky; Mahrous Ahmed; Mohamed Orabi; Abdelali El Aroudi;doi: 10.3390/en13112929
Microinverters are an essential part of the photovoltaic (PV) industry with significant exponential prevalence in new PV module architectures. However, electrolyte capacitors used to decouple double line frequency make the single-phase microinverters topologies the slightest unit in this promising industry. Three-phase microinverter topologies are the new trend in this industry because they do not have double-line frequency problems and they do not need the use of electrolyte capacitors. Moreover, these topologies can provide additional features such as four-wire operation. This paper presents a detailed discussion of the strong points of three-phase microinverters compared to single-phase counterparts. The developed topologies of three-phase microinverters are presented and evaluated based on a new classification based on the simplest topologies among dozens of existing inverters. Moreover, the paper considers the required standardized features of PV, grid, and the microinverter topology. These features have been classified as mandatory and essential. Examples of the considered features for classifications are Distributed Maximum Power Point Tracking (DMPPT), voltage boosting gain, and four-wire operation. The developed classification is used to identify the merits and demerits of the classified inverter topologies. Finally, a recommendation is given based on the classified features, chosen inverter topologies, and associated features.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2929/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2929/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Eltaib Abdeen; Mahmoud A. Gaafar; Mohamed Orabi; Emad M. Ahmed; Abdelali El Aroudi;doi: 10.3390/en12102007
This paper presents a multi-input Ćuk-derived Buck-Boost voltage source inverter (CBBVSI) for Photovoltaic (PV) systems. The proposed topology consists of a single-stage DC-AC inverter that combines both DC-DC and DC-AC stages. The DC-DC stage is used for stepping-up the voltage from the PV generator. Simultaneously, the DC-AC stage is used for interfacing the PV source with the AC grid. The topology allows three sources to utilize the antiparallel diodes for each inverter leg for transferring the energy. The proposed system exhibits several features such as a reduction of the number of components compared to typical two-stage structures, and Split-Source Inverter (SSI), and Z-Source Inverter (ZSI) topologies. Moreover, the power of each PV source can be harvested either simultaneously or separately since independent Maximum Power Point Tracking (MPPT) is performed. The system was simulated using MATLAB/SIMULINK software and a 1 kW laboratory prototype was implemented to verify the operation of the proposed CBBVSI. The numerical simulations are presented together with the experimental results, showing a good agreement.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/2007/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/2007/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:UKRI | Assessing the Viability o..., UKRI | Northern Alliance ATTCUKRI| Assessing the Viability of an Open Source DSbD Desktop Software Ecosystem ,UKRI| Northern Alliance ATTCAuthors: Maria Cortada-Torbellino; David Garcia Elvira; Abdelali El Aroudi; Hugo Valderrama-Blavi;The growth of electric vehicles (EVs) has prompted the need to enhance the technology of lithium-ion batteries (LIBs) in order to improve their response when subjected to external factors that can alter their performance, thereby affecting their safety and efficiency. Mechanical abuse has been considered one of the major sources of LIB failure due to the changes it provokes in the structural integrity of cells. Therefore, this article aims to review the main factors that aggravate the effects of mechanical loading based on the results of different laboratory tests that subjected LIBs to abusive testing. The results of different cell types tested under different mechanical loadings have been gathered in order to assess the changes in LIB properties and the main mechanisms responsible for their failure and permanent damage. The main consequences of mechanical abuse are the increase in LIB degradation and the formation of events such as internal short circuits (ISCs) and thermal runways (TRs). Then, a set of standards and regulations that evaluate the LIB under mechanical abuse conditions are also reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Youssef Hassan; Mohamed Orabi; Abdulaziz Alshreef; Omar M. Al-Rabghi; Badr A. Habeebullah; Abdelali El Aroudi; Mohamed A. Ismeil;doi: 10.3390/en13123159
The increase in operating temperature of PV generators leads to degradation of their performance. These adverse effects of high temperatures are considered as one of the most important problems that solar panel operation faces in hot weather areas. A lot of research has been undertaken to study this aspect and find ways of limiting the harm caused by such high temperatures. To overcome this harm and to maintain the operating temperature of the PV cells within the optimum range specified by manufacturers, cooling the solar panels often becomes indispensable. This paper discusses the heat transfer through the solar panel layers and studies the effect of high temperature on the solar panel performance in a hot desert environment. It also presents the development of a new solar panel structure viz. by installing an aluminum heat sink to reduce the effect of temperature rise and thus improve the solar panel performance. The study focuses on a pole-mounted solar panel for a street lighting apparatus in extremely hot desert conditions with fluctuating wind speeds. It will be shown that adding an aluminum heat sink to the solar panel bottom mitigates the effect of increased temperature and hence modifies the solar panel operating point by increasing both the efficiency and the lifetime. The solar cell temperature is decreased by 16.4% as a result of the aluminum heat sink installation on the solar panel back sheet and consequently, the accumulated energy produced by the the solar panel is increased by 13.23% per day.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3159/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3159/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Alexandra Blanch-Fortuna; David Zambrano-Prada; Oswaldo López-Santos; Abdelali El Aroudi; +2 AuthorsAlexandra Blanch-Fortuna; David Zambrano-Prada; Oswaldo López-Santos; Abdelali El Aroudi; Luis Vázquez-Seisdedos; Luis Martinez-Salamero;doi: 10.3390/en17061393
This paper presents a two-level hierarchical control method for the power distribution between the hybrid energy storage system (HESS) and the main dc bus of a microgrid for ultrafast charging of electric vehicles (EVs). The HESS is composed of a supercapacitor and a battery and is an essential part to fulfill the charging demand of EVs in a microgrid made up of a 220 VRMS ac bus, two dc buses of 600 V and 1500 V, respectively, and four charging points. A state machine defines the four operating modes of the HESS and establishes the conditions for the corresponding transitions among them, namely, charging the battery and the supercapacitor from the bus, injecting the current from the HESS into the 1500 V dc bus to ensure the power balance in the microgrid, regulating the bus voltage, and establishing the disconnection mode. The primary level of the control system regulates the current and voltage of the battery, supercapacitor, and dc bus, while the secondary level establishes the operating mode of the HESS and provides the appropriate references to the primary level. In the primary level, sliding mode control (SMC) is used in both the battery and supercapacitor in the inner loop of a cascade control that implements the standard constant current–constant voltage (CC-CV) charging protocol. In the same level, linear control is applied in the CV phase of the protocol and for bus voltage regulation or the current injection into the bus. PSIM simulations of the operating modes and their corresponding transitions verify the theoretical predictions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Abdelali El Aroudi; Blanca Areli Martínez-Treviño; Enric Vidal-Idiarte; Angel Cid-Pastor;doi: 10.3390/en12061055
This paper proposes a digital sliding-mode controller for a DC-DC boost converter under constant power-loading conditions. The controller has been designed in two steps: the first step is to reach the sliding-mode regime while ensuring inrush current limiting; and the second one is to move the system to the desired operating point. By imposing sliding-mode regime, the equivalent control and the discrete-time large-signal dynamic model of this system are derived. The analysis shows that unlike with a resistive load, the boost converter under a fixed-frequency digital sliding-mode current control with external voltage loop open and loaded by a constant power load, is unstable. Furthermore, as with a resistive load, the system presents a right-half plane zero in the control-to-output transfer function. After that, an outer controller is designed in the z-domain for system stabilization and output voltage regulation. The results show that the system exhibits good performance in startup in terms of inrush current limiting and in transient response due to load and input voltage disturbances. Numerical simulations from a detailed switched model are in good agreement with the theoretical predictions. An experimental prototype is implemented to verify the mathematical analysis and the numerical simulation, which results in a perfect agreement in small-signal and steady-state behavior but also in a small discrepancy in the current limitation due a small propagation delay. Some efficient solutions have been proposed to mitigate the inrush current in the experimental results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1055/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1055/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Gorg Abdelmassih; Mohammed Al-Numay; Abdelali El Aroudi;doi: 10.3390/en14196127
In this study, we analyze observational and predicted wind energy datasets of the lower 48 states of the United States, and we intend to predict an optimal map for new turbines placement. Several approaches have been implemented to investigate the correlation between current wind power stations, power capacity, wind seasonality, and site selection. The correlation between stations is carried out according to Pearson correlation coefficient approach joined with the spherical law of cosines to calculate the distances. The high correlation values between the stations spaced within a distance of 100 km show that installing more turbines close to the current farms would assist the electrical grid. The total power capacity indicates that the current wind turbines are utilizing approximately 70% of the wind resources available in the turbine’s sites. The Power spectrum of Fourier’s spectral density indicates main, secondary, and harmonic frequencies correspond to yearly, semiyearly, and daily wind-speed periodic patterns. We propose and validate a numerical approach based on a novel fuzzy logic framework for wind turbines placement. Map optimizations are fitted considering different parameters presented in wind speed, land use, price, and elevation. Map optimization results show that suitable sites for turbines placement are in general agreement with the direction of the correlation approach.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6127/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Enric Vidal-Idiarte; Carlos Restrepo; Abdelali El Aroudi; Javier Calvente; Roberto Giral;doi: 10.3390/en12142738
This paper presents the analysis and design of a PWM nonlinear digital control of a buck converter based on input-output linearization. The control employs a discrete-time bilinear model of the power converter for continuous conduction mode operation (CCM) to create an internal current control loop wherein the inductor current error with respect to its reference decreases to zero in geometric progression. This internal loop is as a constant frequency discrete-time sliding mode control loop with a parameter that allows adjusting how fast the error is driven to zero. Subsequently, an outer voltage loop designed by linear techniques provides the reference of the inner current loop to regulate the converter output voltage. The two-loop control offers a fast transient response and a high regulation degree of the output voltage in front of reference changes and disturbances in the input voltage and output load. The experimental results are in good agreement with both theoretical predictions and PSIM simulations.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2738/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2738/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Maria Cortada-Torbellino; Abdelali El Aroudi; Hugo Valderrama-Blavi;doi: 10.3390/en16052458
This article constitutes a relatively new perspective that has emerged from the need to reduce environmental pollution from internal combustion engine vehicles (ICEVs) by reinforcing the fleet of electric vehicles (EVs) on the road. Future requirements to exclusively use zero-emission vehicles have resulted in the necessity of enhancing the testing and monitoring process for EVs in order to release reliable devices. The unpredictable response of lithium-ion batteries (LIBS), future lack of raw materials, and inconsistencies in the present regulations must be reviewed and understood in order to develop enhanced batteries. This article aims to outline the future perspective of nonconventional vehicles monopolizing the roads by year 2035 in order to eradicate CO2 emissions by year 2050.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Seyedamin Valedsaravi; Abdelali El Aroudi; Jose A. Barrado-Rodrigo; Walid Issa; Luis Martínez-Salamero;doi: 10.3390/en15103756
Load and supply parameters may be uncertain in microgrids (MGs) due for instance to the intermittent nature of renewable energy sources among others. Guaranteeing reliable and stable MGs despite parameter uncertainties is crucial for their correct operation. Their stability and dynamical features are directly related to the controllers’ parameters and power-sharing coefficients. Hence, to maintain power good quality within the desirable range of system parameters and to have a satisfactory response to sudden load changes, careful selection of the controllers and power-sharing coefficients are necessary. In this paper, a simple design approach for the optimal design of controllers’ parameters is presented in an islanded MG. To that aim, an optimization problem is formulated based on a small-signal state-space model and solved by three different optimization techniques including particle swarm optimization (PSO), genetic algorithm (GA), and a proposed approach based on the combination of both PSO and GA. The optimized coefficients are selected to guarantee desirable static and dynamic responses in a wide range of operations regardless of the number of inverters, system configuration, output impedance differences, and load types. Through the proposed design and tuning method, the performance of the MG is improved as compared to those obtained using state-of-art techniques. This fact is demonstrated by using numerical simulations performed on a detailed model implemented in PSIM© software.
CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3756/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert CORE arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/10/3756/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Ahmed Shawky; Mahrous Ahmed; Mohamed Orabi; Abdelali El Aroudi;doi: 10.3390/en13112929
Microinverters are an essential part of the photovoltaic (PV) industry with significant exponential prevalence in new PV module architectures. However, electrolyte capacitors used to decouple double line frequency make the single-phase microinverters topologies the slightest unit in this promising industry. Three-phase microinverter topologies are the new trend in this industry because they do not have double-line frequency problems and they do not need the use of electrolyte capacitors. Moreover, these topologies can provide additional features such as four-wire operation. This paper presents a detailed discussion of the strong points of three-phase microinverters compared to single-phase counterparts. The developed topologies of three-phase microinverters are presented and evaluated based on a new classification based on the simplest topologies among dozens of existing inverters. Moreover, the paper considers the required standardized features of PV, grid, and the microinverter topology. These features have been classified as mandatory and essential. Examples of the considered features for classifications are Distributed Maximum Power Point Tracking (DMPPT), voltage boosting gain, and four-wire operation. The developed classification is used to identify the merits and demerits of the classified inverter topologies. Finally, a recommendation is given based on the classified features, chosen inverter topologies, and associated features.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2929/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2929/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Eltaib Abdeen; Mahmoud A. Gaafar; Mohamed Orabi; Emad M. Ahmed; Abdelali El Aroudi;doi: 10.3390/en12102007
This paper presents a multi-input Ćuk-derived Buck-Boost voltage source inverter (CBBVSI) for Photovoltaic (PV) systems. The proposed topology consists of a single-stage DC-AC inverter that combines both DC-DC and DC-AC stages. The DC-DC stage is used for stepping-up the voltage from the PV generator. Simultaneously, the DC-AC stage is used for interfacing the PV source with the AC grid. The topology allows three sources to utilize the antiparallel diodes for each inverter leg for transferring the energy. The proposed system exhibits several features such as a reduction of the number of components compared to typical two-stage structures, and Split-Source Inverter (SSI), and Z-Source Inverter (ZSI) topologies. Moreover, the power of each PV source can be harvested either simultaneously or separately since independent Maximum Power Point Tracking (MPPT) is performed. The system was simulated using MATLAB/SIMULINK software and a 1 kW laboratory prototype was implemented to verify the operation of the proposed CBBVSI. The numerical simulations are presented together with the experimental results, showing a good agreement.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/2007/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/10/2007/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:UKRI | Assessing the Viability o..., UKRI | Northern Alliance ATTCUKRI| Assessing the Viability of an Open Source DSbD Desktop Software Ecosystem ,UKRI| Northern Alliance ATTCAuthors: Maria Cortada-Torbellino; David Garcia Elvira; Abdelali El Aroudi; Hugo Valderrama-Blavi;The growth of electric vehicles (EVs) has prompted the need to enhance the technology of lithium-ion batteries (LIBs) in order to improve their response when subjected to external factors that can alter their performance, thereby affecting their safety and efficiency. Mechanical abuse has been considered one of the major sources of LIB failure due to the changes it provokes in the structural integrity of cells. Therefore, this article aims to review the main factors that aggravate the effects of mechanical loading based on the results of different laboratory tests that subjected LIBs to abusive testing. The results of different cell types tested under different mechanical loadings have been gathered in order to assess the changes in LIB properties and the main mechanisms responsible for their failure and permanent damage. The main consequences of mechanical abuse are the increase in LIB degradation and the formation of events such as internal short circuits (ISCs) and thermal runways (TRs). Then, a set of standards and regulations that evaluate the LIB under mechanical abuse conditions are also reviewed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
