- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- Energy Research
- 7. Clean energy
- 13. Climate action
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhe Xiong; Yi Wang; Syed Shatir A. Syed-Hassan; Xun Hu; Hengda Han; Sheng Su; Kai Xu; Long Jiang; Junhao Guo; Engamba Esso Samy Berthold; Song Hu; Jun Xiang;Abstract Bio-oil from the fast pyrolysis of biomass can be converted to solid carbon materials, chemicals and syngas by various thermochemical conversion methods. As a first step in all of these processes, bio-oil undergoes drastic components changes due to its exposure to the elevated temperature. Understanding the effects of heating rate on bio-oil transformation during its pyrolysis is therefore crucial for effective utilization of bio-oil. In this study, a bio-oil sample produced from the fast pyrolysis of rice husk at 500 °C was pyrolyzed in a fixed-bed reactor at temperatures between 300 and 800 °C at three different heating rates: fast (≈200 °C/s), medium (≈20 °C/s), and slow (≈0.33 °C/s). In addition to the quantification of coke and tar yields, the tar was characterized with an ultraviolet (UV) fluorescence spectroscopy, a gas chromatography/mass spectrometer (GC/MS) and a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Our results indicate that slow heating rates promote polymerization of bio-oil components, particularly at low temperatures ( 500) were also promoted at fast heating rates via the more intense secondary reactions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Lushi Sun; Jun Xiang; Hong Yao; Song Hu; Ben Wang; Jie Yu; Yu Qiao;pmid: 26538255
Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover, pyrolysis can be a better choice for treatment of solid waster in terms of controlling heavy metals. PVC and Tire should be separated and treated individually due to high possibility of heavy metal emission. This information may then serve as a guideline for the design of the subsequent gas cleaning plant, necessary to reduce the final emissions to the atmosphere to an acceptable level.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5644-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5644-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Shu Zhang; Jun Xiang; Haisheng Lin; Yi Wang; Xun Hu; Qingyin Li; Mortaza Gholizadeh; Song Hu; Xiangzhou Yuan;pmid: 34118669
Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theoretical value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and CO during the thermal treatment of the hydrochar and altered its morphology by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Long Jiang; Song Hu; Yi Wang; Sheng Su; Lushi Sun; Boyang Xu; Limo He; Jun Xiang;Abstract This study aimed to understand the mechanism of dual catalytic effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass gasification. Two kinds of typical Chinese agricultural biomass were gasified using updraft quartz reactor with steam. The results indicated that external steam had negligible effects on promoting further thermal cracking or reforming of tar under 900 °C. The presence of AAEMs enhanced the production of H2 and CO2, while inhibited the production of CO、CH4、C2H4 and C2H6. The heterogeneous char-steam reaction, as well as the homogeneous hydrocarbons reforming and water-gas shift reactions were promoted by the presence of AAEMs. Alkaline earth metals had more significant catalytic effects on water-gas shift reaction compared to alkali metals. The results from UV fluorescence spectra further proved that the additional steam had negligible promoting effects on secondary reforming of tar, while the inherent AAEMs had a significant catalytic role in thermal cracking and reforming of tars.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.08.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.08.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Xun Hu; Zhang Yufei; Sheng Su; Peng Wu; Yi Wang; Xu Jun; Song Hu; Lianying Shan; Kai Xu; Jun Xiang;Abstract Coal breakage characteristics have significant effects on the clean utilization of coal. The mechanical properties of Shenmu (SM) coal, Hongshaquan (HSQ) coal and Wucaiwan (WCW) coal under uniaxial compression were tested by a self-designed bench at 90 °C, 120 °C, 150 °C and 180 °C. The results show that the mechanical parameters overall decrease with the increase of temperature (T, °C) except that SM coal has an increasing trend from 120 °C to 180 °C due to thermal expansion of coal matrix and moisture inside closed pores. The compressive strength (σm, MPa) of SM coal at 120 °C decreased by 43% compared with it in 90 °C. By means of fractal theory, these mechanical properties can be reflected by the meso-structural characteristics of coal surface. The fractal dimension (D) generally possesses a positive correlation with the stress (σ, MPa). In initial segments, the curves of some coal samples are relatively stable due to compaction and compressive resistance. Two dimensionless parameters, relative fractal dimension (Dr) and relative stress (σr), were introduced to represent the relationship of meso-structural and mechanical properties quantitatively. It is shown that the relative fractal dimension rises quickly when the relative stress is above 0.75, and the relationship of the two dimensionless parameters can be described.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Xun Hu; Yijun Zhao; Yijun Zhao; Dimple Mody Quyn; Yi Wang; Jun Xiang; Chun-Zhu Li; Song Hu; Yao Song; Yao Song;handle: 20.500.11937/4246
Abstract This study aims to investigate the importance of aromatic structures in tar to the destruction of tar itself during the volatile–char interactions. The same nascent char was subjected to interactions with two distinctly different volatiles (e.g. coal volatiles and biomass volatiles) at 700–900 °C. The results indicate that the aromatic structures in tar are more reactive with char than the non-aromatic structures, especially at high temperature (e.g. 900 °C). At lower temperatures (
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Song Hu; Mohamed E. Mostafa; Mohamed E. Mostafa; Xun Hu; Jun Xiang; Yi Wang; Sheng Su; Saad A. El-Sayed; Zhang Yufei;Biomass pelletization technology overcame the poor utilization and handling properties of loose materials. The quality of pellets is sensitive to the pelletization conditions. In this work the impact of the operating parameters as pressure, temperature, and moisture content on the mechanical characteristics as the compression strength ( $${\sigma }_{max}$$ ) and durability ( $$Du$$ ) and energy consumption for both production ( $${E}_{c,p}$$ ) and ejection ( $${E}_{c,ej}$$ ) of rice straw (RS) pellets was studied. Furthermore, the synergic effect of these parameters on the pellet characteristics was evaluated at the optimum conditions. The operating parameters were optimized using a multi-objective optimization approach of Response Surface Method (RSM) based on the predicted significant models that describe the physical characteristics of the pellets. The optimization results showed that high quality pellets could be produced at a pressure of 68.4 MPa, temperature of 110.0 °C, and moisture of 8.2% for solid pellets and 63.6 MPa, 110.0 °C, and 8.7% for hollow pellets. Significant individual and interaction effects of all independent parameters on the pellets characteristics were investigated using statistical analysis results, main plot curves and 2D interaction contour plots. New significant empirical dimensionless relationships that correlate the characteristics of pellets were proposed. These relationships can be generalized for any type of pellets that produced under various operating conditions. Hollow pellets are recommended to be used in the industrial sector due to their enhanced heat transfer which resulted from the high surface to volume ratio besides their ease production at normal operating condition similar to that required for solid pellets.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Lushi Sun; Sheng Su; Jun Xiang; Song Hu; Xiaoning Yang;pmid: 22951495
Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2012.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 232 citations 232 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2012.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Jun Xiang; Chuan Ma; Ben Wang; Jie Yu; Zijian Song; Lushi Sun; Song Hu; Sheng Su;Abstract Electronic waste plastics (e-waste plastics) have been one of the emerging and fastest-growing waste streams due to the increasing number of generation in waste electrical and electronic equipment (WEEE). Given that brominated flame retardant (BFR) materials in e-waste plastics have been the major impediment for recycling treatment, chemical recycling has been proposed as an environmentally friendly method of recycling e-waste plastics for clean fuels production or chemical feedstocks. This paper summarized the current techniques of BFR-plastics recycling with a view to solving energy crisis and the environmental degradation of BFR-plastics. Emphasis was paid on the recent chemical treatment of BFR-plastics, including pyrolysis, co-pyrolysis and catalytic cracking, which are yet to be completely feasible in conversion of BFR-plastics for clean fuels production. Hydrothermal treatment is regarded as a novel high-efficiency technology to recycle BFR-plastics, which can be a potential process for the in situ debromination of oil products. An advanced chemical recycling technique, pyrolysis-catalytic upgrading process, is highlighted. The recycling route of pyrolyzing BFR-plastics prior to catalytic upgrading was intended to obtain high quantity oils, and then the upgrading process of pyrolysis oils was conducted by means of catalytic hydrodebromination with the aim of obtaining bromine-free oils for commercial applications. In short, the integration of pyrolysis with catalytic upgrading process can provide significant economic and environmental options in conversion of e-waste plastics into useful and high-value materials. Further investigations are required to develop the pyrolysis-catalytic upgrading process to become sustainable and commercially viable for clean fuels production.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 228 citations 228 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Pengshuai Han; Ningning Si; Cui Xiaoning; Sheng Su; Xu Jun; Jun Xiang; Zhao Zhigang; Long Jiang; Yi Wang; Song Hu; Gang Chen; Yingbiao Zhou; Zhijun Sun;Abstract This study evaluates the performance of a 1000 MW double reheat ultra-supercritical power plant. An exergy analysis was performed to direct the energy loss distribution of this system. Based on the exergy balance equation, together with exergy efficiency, exergy loss coefficient, and exergy loss rate, the exergy distribution and efficiency of the unit were determined. Results show that the highest exergy loss in furnace is as high as 85%, which caused by the combustion of fuel and heat exchange of water wall. The VHP and the two LPs suffer the highest exergy losses, namely 1.86%, 2.04% and 2.13% respectively. The regenerative heating system has an exergy loss rate of 2.3%. The condenser suffers a heat loss of 999 MW, but its exergy is as low as 20.49 MW. The sensitivity variations of the unit’s exergy efficiency with load, feedwater temperature, main steam temperature and pressure, the twice reheat steam temperatures, and steam exhaust pressure were also analyzed, indicating that load, feedwater temperature, and steam exhaust pressure influence the exergy efficiency of this unit than other elements. The overall exergy efficiency decreases along with the gradual increase of steam exhaust pressure at any constant outlet boiler temperature, but it increases as the load, feedwater temperature, main steam temperature and pressure, and twice reheat steam temperatures increase at fixed steam exhaust pressure.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.05.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.05.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhe Xiong; Yi Wang; Syed Shatir A. Syed-Hassan; Xun Hu; Hengda Han; Sheng Su; Kai Xu; Long Jiang; Junhao Guo; Engamba Esso Samy Berthold; Song Hu; Jun Xiang;Abstract Bio-oil from the fast pyrolysis of biomass can be converted to solid carbon materials, chemicals and syngas by various thermochemical conversion methods. As a first step in all of these processes, bio-oil undergoes drastic components changes due to its exposure to the elevated temperature. Understanding the effects of heating rate on bio-oil transformation during its pyrolysis is therefore crucial for effective utilization of bio-oil. In this study, a bio-oil sample produced from the fast pyrolysis of rice husk at 500 °C was pyrolyzed in a fixed-bed reactor at temperatures between 300 and 800 °C at three different heating rates: fast (≈200 °C/s), medium (≈20 °C/s), and slow (≈0.33 °C/s). In addition to the quantification of coke and tar yields, the tar was characterized with an ultraviolet (UV) fluorescence spectroscopy, a gas chromatography/mass spectrometer (GC/MS) and a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Our results indicate that slow heating rates promote polymerization of bio-oil components, particularly at low temperatures ( 500) were also promoted at fast heating rates via the more intense secondary reactions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 146 citations 146 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.02.078&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Lushi Sun; Jun Xiang; Hong Yao; Song Hu; Ben Wang; Jie Yu; Yu Qiao;pmid: 26538255
Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover, pyrolysis can be a better choice for treatment of solid waster in terms of controlling heavy metals. PVC and Tire should be separated and treated individually due to high possibility of heavy metal emission. This information may then serve as a guideline for the design of the subsequent gas cleaning plant, necessary to reduce the final emissions to the atmosphere to an acceptable level.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5644-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2015 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-015-5644-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Shu Zhang; Jun Xiang; Haisheng Lin; Yi Wang; Xun Hu; Qingyin Li; Mortaza Gholizadeh; Song Hu; Xiangzhou Yuan;pmid: 34118669
Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theoretical value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and CO during the thermal treatment of the hydrochar and altered its morphology by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Long Jiang; Song Hu; Yi Wang; Sheng Su; Lushi Sun; Boyang Xu; Limo He; Jun Xiang;Abstract This study aimed to understand the mechanism of dual catalytic effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass gasification. Two kinds of typical Chinese agricultural biomass were gasified using updraft quartz reactor with steam. The results indicated that external steam had negligible effects on promoting further thermal cracking or reforming of tar under 900 °C. The presence of AAEMs enhanced the production of H2 and CO2, while inhibited the production of CO、CH4、C2H4 and C2H6. The heterogeneous char-steam reaction, as well as the homogeneous hydrocarbons reforming and water-gas shift reactions were promoted by the presence of AAEMs. Alkaline earth metals had more significant catalytic effects on water-gas shift reaction compared to alkali metals. The results from UV fluorescence spectra further proved that the additional steam had negligible promoting effects on secondary reforming of tar, while the inherent AAEMs had a significant catalytic role in thermal cracking and reforming of tars.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.08.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 169 citations 169 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2015.08.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Xun Hu; Zhang Yufei; Sheng Su; Peng Wu; Yi Wang; Xu Jun; Song Hu; Lianying Shan; Kai Xu; Jun Xiang;Abstract Coal breakage characteristics have significant effects on the clean utilization of coal. The mechanical properties of Shenmu (SM) coal, Hongshaquan (HSQ) coal and Wucaiwan (WCW) coal under uniaxial compression were tested by a self-designed bench at 90 °C, 120 °C, 150 °C and 180 °C. The results show that the mechanical parameters overall decrease with the increase of temperature (T, °C) except that SM coal has an increasing trend from 120 °C to 180 °C due to thermal expansion of coal matrix and moisture inside closed pores. The compressive strength (σm, MPa) of SM coal at 120 °C decreased by 43% compared with it in 90 °C. By means of fractal theory, these mechanical properties can be reflected by the meso-structural characteristics of coal surface. The fractal dimension (D) generally possesses a positive correlation with the stress (σ, MPa). In initial segments, the curves of some coal samples are relatively stable due to compaction and compressive resistance. Two dimensionless parameters, relative fractal dimension (Dr) and relative stress (σr), were introduced to represent the relationship of meso-structural and mechanical properties quantitatively. It is shown that the relative fractal dimension rises quickly when the relative stress is above 0.75, and the relationship of the two dimensionless parameters can be described.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2019.05.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Xun Hu; Yijun Zhao; Yijun Zhao; Dimple Mody Quyn; Yi Wang; Jun Xiang; Chun-Zhu Li; Song Hu; Yao Song; Yao Song;handle: 20.500.11937/4246
Abstract This study aims to investigate the importance of aromatic structures in tar to the destruction of tar itself during the volatile–char interactions. The same nascent char was subjected to interactions with two distinctly different volatiles (e.g. coal volatiles and biomass volatiles) at 700–900 °C. The results indicate that the aromatic structures in tar are more reactive with char than the non-aromatic structures, especially at high temperature (e.g. 900 °C). At lower temperatures (
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.12.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Song Hu; Mohamed E. Mostafa; Mohamed E. Mostafa; Xun Hu; Jun Xiang; Yi Wang; Sheng Su; Saad A. El-Sayed; Zhang Yufei;Biomass pelletization technology overcame the poor utilization and handling properties of loose materials. The quality of pellets is sensitive to the pelletization conditions. In this work the impact of the operating parameters as pressure, temperature, and moisture content on the mechanical characteristics as the compression strength ( $${\sigma }_{max}$$ ) and durability ( $$Du$$ ) and energy consumption for both production ( $${E}_{c,p}$$ ) and ejection ( $${E}_{c,ej}$$ ) of rice straw (RS) pellets was studied. Furthermore, the synergic effect of these parameters on the pellet characteristics was evaluated at the optimum conditions. The operating parameters were optimized using a multi-objective optimization approach of Response Surface Method (RSM) based on the predicted significant models that describe the physical characteristics of the pellets. The optimization results showed that high quality pellets could be produced at a pressure of 68.4 MPa, temperature of 110.0 °C, and moisture of 8.2% for solid pellets and 63.6 MPa, 110.0 °C, and 8.7% for hollow pellets. Significant individual and interaction effects of all independent parameters on the pellets characteristics were investigated using statistical analysis results, main plot curves and 2D interaction contour plots. New significant empirical dimensionless relationships that correlate the characteristics of pellets were proposed. These relationships can be generalized for any type of pellets that produced under various operating conditions. Hollow pellets are recommended to be used in the industrial sector due to their enhanced heat transfer which resulted from the high surface to volume ratio besides their ease production at normal operating condition similar to that required for solid pellets.
Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Waste and Biomass Va... arrow_drop_down Waste and Biomass ValorizationArticle . 2021 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01437-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Lushi Sun; Sheng Su; Jun Xiang; Song Hu; Xiaoning Yang;pmid: 22951495
Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2012.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 232 citations 232 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2012.07.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Jun Xiang; Chuan Ma; Ben Wang; Jie Yu; Zijian Song; Lushi Sun; Song Hu; Sheng Su;Abstract Electronic waste plastics (e-waste plastics) have been one of the emerging and fastest-growing waste streams due to the increasing number of generation in waste electrical and electronic equipment (WEEE). Given that brominated flame retardant (BFR) materials in e-waste plastics have been the major impediment for recycling treatment, chemical recycling has been proposed as an environmentally friendly method of recycling e-waste plastics for clean fuels production or chemical feedstocks. This paper summarized the current techniques of BFR-plastics recycling with a view to solving energy crisis and the environmental degradation of BFR-plastics. Emphasis was paid on the recent chemical treatment of BFR-plastics, including pyrolysis, co-pyrolysis and catalytic cracking, which are yet to be completely feasible in conversion of BFR-plastics for clean fuels production. Hydrothermal treatment is regarded as a novel high-efficiency technology to recycle BFR-plastics, which can be a potential process for the in situ debromination of oil products. An advanced chemical recycling technique, pyrolysis-catalytic upgrading process, is highlighted. The recycling route of pyrolyzing BFR-plastics prior to catalytic upgrading was intended to obtain high quantity oils, and then the upgrading process of pyrolysis oils was conducted by means of catalytic hydrodebromination with the aim of obtaining bromine-free oils for commercial applications. In short, the integration of pyrolysis with catalytic upgrading process can provide significant economic and environmental options in conversion of e-waste plastics into useful and high-value materials. Further investigations are required to develop the pyrolysis-catalytic upgrading process to become sustainable and commercially viable for clean fuels production.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 228 citations 228 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Pengshuai Han; Ningning Si; Cui Xiaoning; Sheng Su; Xu Jun; Jun Xiang; Zhao Zhigang; Long Jiang; Yi Wang; Song Hu; Gang Chen; Yingbiao Zhou; Zhijun Sun;Abstract This study evaluates the performance of a 1000 MW double reheat ultra-supercritical power plant. An exergy analysis was performed to direct the energy loss distribution of this system. Based on the exergy balance equation, together with exergy efficiency, exergy loss coefficient, and exergy loss rate, the exergy distribution and efficiency of the unit were determined. Results show that the highest exergy loss in furnace is as high as 85%, which caused by the combustion of fuel and heat exchange of water wall. The VHP and the two LPs suffer the highest exergy losses, namely 1.86%, 2.04% and 2.13% respectively. The regenerative heating system has an exergy loss rate of 2.3%. The condenser suffers a heat loss of 999 MW, but its exergy is as low as 20.49 MW. The sensitivity variations of the unit’s exergy efficiency with load, feedwater temperature, main steam temperature and pressure, the twice reheat steam temperatures, and steam exhaust pressure were also analyzed, indicating that load, feedwater temperature, and steam exhaust pressure influence the exergy efficiency of this unit than other elements. The overall exergy efficiency decreases along with the gradual increase of steam exhaust pressure at any constant outlet boiler temperature, but it increases as the load, feedwater temperature, main steam temperature and pressure, and twice reheat steam temperatures increase at fixed steam exhaust pressure.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.05.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.05.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu