
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass

Abstract This study aimed to understand the mechanism of dual catalytic effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass gasification. Two kinds of typical Chinese agricultural biomass were gasified using updraft quartz reactor with steam. The results indicated that external steam had negligible effects on promoting further thermal cracking or reforming of tar under 900 °C. The presence of AAEMs enhanced the production of H2 and CO2, while inhibited the production of CO、CH4、C2H4 and C2H6. The heterogeneous char-steam reaction, as well as the homogeneous hydrocarbons reforming and water-gas shift reactions were promoted by the presence of AAEMs. Alkaline earth metals had more significant catalytic effects on water-gas shift reaction compared to alkali metals. The results from UV fluorescence spectra further proved that the additional steam had negligible promoting effects on secondary reforming of tar, while the inherent AAEMs had a significant catalytic role in thermal cracking and reforming of tars.
- Huazhong University of Science and Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).169 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
