- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: Pranav Kulkarni; Debasis Ghosh; R. Geetha Balakrishna;doi: 10.1039/d0se01313g
This review presents recent advancements in high-voltage rechargeable aqueous batteries employing water-in-salt and modified water-in-salt electrolytes.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01313g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01313g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Authors: Hemanth Kumar Beere; Pranav Kulkarni; Uday Narayan Maiti; R. Geetha Balakrishna; +4 AuthorsHemanth Kumar Beere; Pranav Kulkarni; Uday Narayan Maiti; R. Geetha Balakrishna; Priyam Mukherjee; Hyun Young Jung; Ketaki Samanta; Debasis Ghosh;doi: 10.1039/d3se00736g
First row transition metal-based compositionally complex molybdate is explored with promising bifunctional oxygen electrocatalytic performance in alkaline conditions.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00736g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00736g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Soumen Khan; Santanu Chand; Prahlad Yadav; Debasis Ghosh; Chanchal Chakraborty;doi: 10.1039/d5se00273g
A highly robust, conductive 3D triazolate Fe-MOF serves as a standalone cathode for AZIBs, offering promising specific capacity with 60% retention over 2100 cycles. This study showcases the potential of 3D MOF in energy storage through AZIBs.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5se00273g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5se00273g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Chapal Kumar Das; Soumen Giri; Debasis Ghosh;doi: 10.1002/ep.11874
Our present work deals with the hydrothermal synthesis of Platelet β Co(OH)2 using cobalt(II) acetate as the metal precursor and ammonia solution as the hydrolyzing agent. Electrochemical capacitive performance was studied through cyclic voltammetry (CV), galvanostatic charge discharge (CCD), and electrochemical impedance spectroscopy (EIS) analyses with 6 M KOH as supporting electrolyte. The Electrochemical characterizations of the β Co(OH)2 in 6M KOH exhibited a maximum specific capacitance of 251 F/g at 2 mV/s scan rate and 228 F/g at 2 A/g constant current density accompanied with high cycle stability. Calcination of the β Co(OH)2 at 330°C leads to the formation of spinal Co3O4 exhibiting an increased specific capacitance of 270 F/g at 2mV/s scan rate and 238 F/g at 2A/g constant current density. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1059–1064, 2014
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.11874&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.11874&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Pooja B. Naik; Prahlada Thippeswamy; Radha Nagaraj; Rangaswamy Puttaswamy; Hemanth Kumar Beere; Uday Narayan Maiti; Chanchal Mondal; Nataraj Sanna Kotrappanavar; Debasis Ghosh;A rechargeable zinc ion capacitor (ZIC) employing a metallic anode, nature-abundant materials-derived high-performance cathode, and an aqueous electrolyte represents an interesting combination of high capacitance, high power, safety operation, and overall a sustainable and economic system, which make them a leading power source to portable consumer electronics. However, it is often a challenge to fabricate a large-area flexible device with a metallic anode due to the characteristic rigidity of the metal. Herein we present a high-performance aqueous ZIC based on abundant agricultural waste biomass (Areca Catechu sheath)-derived high-surface-area (2760 m 2 /g) mesoporous multilayer-stacked carbon sheets as the capacitive electrode in 1 M ZnSO 4 electrolyte. In coin cell configuration, the ZIC showed a high specific capacitance of 208 F/g at 0.1 A/g, a good rate capability, and an outstanding cyclic stability with 84.5% capacitance retention after 10 000 cycles at a current density of 5 A/g. We also demonstrate an easy and scalable strategy to fabricate a large-area flexible zinc ion capacitor with laser-scribed carbon (LSC@PI), scribed on a polyimide film with customizable area as the flexible current collector for both anode and cathode. Electrodeposition of zinc onto LSC@PI as anode showed a very low plating stripping overpotential, and the flexible sandwich-type ZIC with an electrolyte-soaked paper separator exhibited excellent flexibility and a high areal capacitance of 128.7 mF/cm 2 at 100 mA/cm 2 current when bended at an angle of 110°, corresponding to an energy density of 32.6 μW h/cm 2 . When the current was increased by 20 times, the flexible device under bending condition could provide an energy density of 11 μW h/cm 2 at a high power density of 1.906 W/cm 2 . The synthesized materials were characterized by X-ray diffraction (XRD), RAMAN, Field Emission Scanning Electron Microscope (FESEM), and Brunauer–Emmett–Teller (BET) analysis, whereas the electrochemical performances were measured in terms of ...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c06569&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c06569&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Royal Society of Chemistry (RSC) Authors: Pranav Kulkarni; Debasis Ghosh; R. Geetha Balakrishna;doi: 10.1039/d0se01313g
This review presents recent advancements in high-voltage rechargeable aqueous batteries employing water-in-salt and modified water-in-salt electrolytes.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01313g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2021 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se01313g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Royal Society of Chemistry (RSC) Authors: Hemanth Kumar Beere; Pranav Kulkarni; Uday Narayan Maiti; R. Geetha Balakrishna; +4 AuthorsHemanth Kumar Beere; Pranav Kulkarni; Uday Narayan Maiti; R. Geetha Balakrishna; Priyam Mukherjee; Hyun Young Jung; Ketaki Samanta; Debasis Ghosh;doi: 10.1039/d3se00736g
First row transition metal-based compositionally complex molybdate is explored with promising bifunctional oxygen electrocatalytic performance in alkaline conditions.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00736g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2023 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d3se00736g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Soumen Khan; Santanu Chand; Prahlad Yadav; Debasis Ghosh; Chanchal Chakraborty;doi: 10.1039/d5se00273g
A highly robust, conductive 3D triazolate Fe-MOF serves as a standalone cathode for AZIBs, offering promising specific capacity with 60% retention over 2100 cycles. This study showcases the potential of 3D MOF in energy storage through AZIBs.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5se00273g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d5se00273g&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Chapal Kumar Das; Soumen Giri; Debasis Ghosh;doi: 10.1002/ep.11874
Our present work deals with the hydrothermal synthesis of Platelet β Co(OH)2 using cobalt(II) acetate as the metal precursor and ammonia solution as the hydrolyzing agent. Electrochemical capacitive performance was studied through cyclic voltammetry (CV), galvanostatic charge discharge (CCD), and electrochemical impedance spectroscopy (EIS) analyses with 6 M KOH as supporting electrolyte. The Electrochemical characterizations of the β Co(OH)2 in 6M KOH exhibited a maximum specific capacitance of 251 F/g at 2 mV/s scan rate and 228 F/g at 2 A/g constant current density accompanied with high cycle stability. Calcination of the β Co(OH)2 at 330°C leads to the formation of spinal Co3O4 exhibiting an increased specific capacitance of 270 F/g at 2mV/s scan rate and 238 F/g at 2A/g constant current density. © 2013 American Institute of Chemical Engineers Environ Prog, 33: 1059–1064, 2014
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.11874&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.11874&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Pooja B. Naik; Prahlada Thippeswamy; Radha Nagaraj; Rangaswamy Puttaswamy; Hemanth Kumar Beere; Uday Narayan Maiti; Chanchal Mondal; Nataraj Sanna Kotrappanavar; Debasis Ghosh;A rechargeable zinc ion capacitor (ZIC) employing a metallic anode, nature-abundant materials-derived high-performance cathode, and an aqueous electrolyte represents an interesting combination of high capacitance, high power, safety operation, and overall a sustainable and economic system, which make them a leading power source to portable consumer electronics. However, it is often a challenge to fabricate a large-area flexible device with a metallic anode due to the characteristic rigidity of the metal. Herein we present a high-performance aqueous ZIC based on abundant agricultural waste biomass (Areca Catechu sheath)-derived high-surface-area (2760 m 2 /g) mesoporous multilayer-stacked carbon sheets as the capacitive electrode in 1 M ZnSO 4 electrolyte. In coin cell configuration, the ZIC showed a high specific capacitance of 208 F/g at 0.1 A/g, a good rate capability, and an outstanding cyclic stability with 84.5% capacitance retention after 10 000 cycles at a current density of 5 A/g. We also demonstrate an easy and scalable strategy to fabricate a large-area flexible zinc ion capacitor with laser-scribed carbon (LSC@PI), scribed on a polyimide film with customizable area as the flexible current collector for both anode and cathode. Electrodeposition of zinc onto LSC@PI as anode showed a very low plating stripping overpotential, and the flexible sandwich-type ZIC with an electrolyte-soaked paper separator exhibited excellent flexibility and a high areal capacitance of 128.7 mF/cm 2 at 100 mA/cm 2 current when bended at an angle of 110°, corresponding to an energy density of 32.6 μW h/cm 2 . When the current was increased by 20 times, the flexible device under bending condition could provide an energy density of 11 μW h/cm 2 at a high power density of 1.906 W/cm 2 . The synthesized materials were characterized by X-ray diffraction (XRD), RAMAN, Field Emission Scanning Electron Microscope (FESEM), and Brunauer–Emmett–Teller (BET) analysis, whereas the electrochemical performances were measured in terms of ...
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c06569&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)ACS Sustainable Chemistry & EngineeringArticle . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.1c06569&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
