- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Funded by:UKRI | Controls on the stability..., ARC | Discovery Projects - Gran..., NSF | Species Inventory of Nema... +3 projectsUKRI| Controls on the stability of soils and their functioning under land use and climate change ,ARC| Discovery Projects - Grant ID: DP150104199 ,NSF| Species Inventory of Nematodes in Tropical Rain Forests of Costa Rica ,NSF| Integrative Taxonomy and Biogeography of Criconematidae ,NSF| Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program ,NSF| Collaborative Research: Limits and Drivers of Metazoan Distributions in the Transantarctic MountainsAuthors: Karin Hohberg; Alan Kergunteuil; E. M. Matveeva; Júlio Carlos Pereira da Silva; +67 AuthorsKarin Hohberg; Alan Kergunteuil; E. M. Matveeva; Júlio Carlos Pereira da Silva; Christian Mulder; Tancredi Caruso; Rachel Creamer; José Mauro da Cunha e Castro; Diana H. Wall; Wim H. van der Putten; Heikki Setälä; Alexey A. Kudrin; Mariette Marais; Djibril Djigal; Kirsten Powers; Jean Trap; Wenju Liang; Daria Kalinkina; Alexei V. Tiunov; Howard Ferris; Xiaoyun Chen; Carmen Gutiérrez; Qi Li; Kaiwen Pan; Johan van den Hoogen; Stefan Geisen; Rutger A. Wilschut; Walter Traunspurger; Sofia R. Costa; Mette Vestergård; Hiroaki Okada; Valentyna Krashevska; El Hassan Mayad; Gerard W. Korthals; Casper W. Quist; Walter S. Andriuzzi; Uffe N. Nielsen; T. A. Duong Nguyen; T. A. Duong Nguyen; Thomas W. Crowther; Loïc Pellissier; Devin Routh; Lieven Waeyenberge; Ron G.M. de Goede; Thomas O. Powers; José Antonio Rodríguez Martín; Wasim Ahmad; Daniel G. Wright; David A. Wardle; Matthew Magilton; Juan E. Palomares Rius; Sara Sanchez Moreno; Juvenil Enrique Cares; Vlada Peneva; Michael Bonkowski; Sergio Rasmann; Roy Neilson; Raquel Campos-Herrera; Cécile Villenave; Stefan Scheu; Paul Kardol; Miguel Escuer; Peter Mullin; Anna Sushchuk; Richard D. Bardgett; Camille Pitteloud; Larissa de Brito Caixeta; Jiue-in Yang; Bryan S. Griffiths; Marie Dam; Byron J. Adams;Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaPublications at Bielefeld UniversityArticle . 2019License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 866 citations 866 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 99visibility views 99 download downloads 139 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaPublications at Bielefeld UniversityArticle . 2019License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Hsuan-Tung, Lin; Jiue-In, Yang; Yu-Ting, Wu; Yo-Jin, Shiau; Li, Lo; Shan-Hua, Yang;pmid: 39657306
The volcanic island, Kueishan Island, harbors two unique shallow-water ecosystems: hydrothermal vents and coral communities. The unique geologic features render the island an ideal place as a spectrum for studying two different ecosystems and mimicking the impacts of climate change on coral reef biota in the future. However, little is known about the meiofauna community there. Hence, we investigated the diversity and composition of free-living marine nematodes over two years by collecting individuals from sediments sampled across a gradient of habitats, including hydrothermal vents, buffering sites, and coral reefs. During the first year, we also monitored abiotic factors, such as sediment and water properties, along with biotic factors, including bacterial diversity assessed through amplicon sequencing, to evaluate their influence on the nematode community. Our findings revealed markedly low nematode abundance and diversity at sulfide-rich vent sites (abundance < 5 ind./L; Shannon index < 1) throughout the study period, contrasting with the highest levels observed at the coral community site (<165.4 ind./L, Shannon index = 1.65). The food supply seemed to be the main factor that drove the difference, as nematode abundance and diversity increased with sedimentary total organic carbon and bacterial diversity. In addition, significant differences in nematode composition were observed between the different sampling sites. Combined with nematode and microbiome data, the buffering site that endured more stress from vent activities was recognized. Our results suggest that the dynamics of nematode communities could be incorporated into projects assessing environmental impacts on coral reef ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Funded by:UKRI | Controls on the stability..., ARC | Discovery Projects - Gran..., NSF | Species Inventory of Nema... +3 projectsUKRI| Controls on the stability of soils and their functioning under land use and climate change ,ARC| Discovery Projects - Grant ID: DP150104199 ,NSF| Species Inventory of Nematodes in Tropical Rain Forests of Costa Rica ,NSF| Integrative Taxonomy and Biogeography of Criconematidae ,NSF| Increased Connectivity in a Polar Desert Resulting from Climate Warming: McMurdo Dry Valley LTER Program ,NSF| Collaborative Research: Limits and Drivers of Metazoan Distributions in the Transantarctic MountainsAuthors: Karin Hohberg; Alan Kergunteuil; E. M. Matveeva; Júlio Carlos Pereira da Silva; +67 AuthorsKarin Hohberg; Alan Kergunteuil; E. M. Matveeva; Júlio Carlos Pereira da Silva; Christian Mulder; Tancredi Caruso; Rachel Creamer; José Mauro da Cunha e Castro; Diana H. Wall; Wim H. van der Putten; Heikki Setälä; Alexey A. Kudrin; Mariette Marais; Djibril Djigal; Kirsten Powers; Jean Trap; Wenju Liang; Daria Kalinkina; Alexei V. Tiunov; Howard Ferris; Xiaoyun Chen; Carmen Gutiérrez; Qi Li; Kaiwen Pan; Johan van den Hoogen; Stefan Geisen; Rutger A. Wilschut; Walter Traunspurger; Sofia R. Costa; Mette Vestergård; Hiroaki Okada; Valentyna Krashevska; El Hassan Mayad; Gerard W. Korthals; Casper W. Quist; Walter S. Andriuzzi; Uffe N. Nielsen; T. A. Duong Nguyen; T. A. Duong Nguyen; Thomas W. Crowther; Loïc Pellissier; Devin Routh; Lieven Waeyenberge; Ron G.M. de Goede; Thomas O. Powers; José Antonio Rodríguez Martín; Wasim Ahmad; Daniel G. Wright; David A. Wardle; Matthew Magilton; Juan E. Palomares Rius; Sara Sanchez Moreno; Juvenil Enrique Cares; Vlada Peneva; Michael Bonkowski; Sergio Rasmann; Roy Neilson; Raquel Campos-Herrera; Cécile Villenave; Stefan Scheu; Paul Kardol; Miguel Escuer; Peter Mullin; Anna Sushchuk; Richard D. Bardgett; Camille Pitteloud; Larissa de Brito Caixeta; Jiue-in Yang; Bryan S. Griffiths; Marie Dam; Byron J. Adams;Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaPublications at Bielefeld UniversityArticle . 2019License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 866 citations 866 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 99visibility views 99 download downloads 139 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2019 . Peer-reviewedFull-Text: http://dx.doi.org/10.1038/s41586-019-1418-6Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAPublikationenserver der Georg-August-Universität GöttingenArticle . 2020The University of Manchester - Institutional RepositoryArticle . 2019Data sources: The University of Manchester - Institutional RepositoryQueen's University Belfast Research PortalArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)IRIS - Università degli Studi di CataniaArticle . 2019Data sources: IRIS - Università degli Studi di CataniaPublications at Bielefeld UniversityArticle . 2019License: "In Copyright" Rights StatementData sources: Publications at Bielefeld UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Hsuan-Tung, Lin; Jiue-In, Yang; Yu-Ting, Wu; Yo-Jin, Shiau; Li, Lo; Shan-Hua, Yang;pmid: 39657306
The volcanic island, Kueishan Island, harbors two unique shallow-water ecosystems: hydrothermal vents and coral communities. The unique geologic features render the island an ideal place as a spectrum for studying two different ecosystems and mimicking the impacts of climate change on coral reef biota in the future. However, little is known about the meiofauna community there. Hence, we investigated the diversity and composition of free-living marine nematodes over two years by collecting individuals from sediments sampled across a gradient of habitats, including hydrothermal vents, buffering sites, and coral reefs. During the first year, we also monitored abiotic factors, such as sediment and water properties, along with biotic factors, including bacterial diversity assessed through amplicon sequencing, to evaluate their influence on the nematode community. Our findings revealed markedly low nematode abundance and diversity at sulfide-rich vent sites (abundance < 5 ind./L; Shannon index < 1) throughout the study period, contrasting with the highest levels observed at the coral community site (<165.4 ind./L, Shannon index = 1.65). The food supply seemed to be the main factor that drove the difference, as nematode abundance and diversity increased with sedimentary total organic carbon and bacterial diversity. In addition, significant differences in nematode composition were observed between the different sampling sites. Combined with nematode and microbiome data, the buffering site that endured more stress from vent activities was recognized. Our results suggest that the dynamics of nematode communities could be incorporated into projects assessing environmental impacts on coral reef ecosystems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
