- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Jinkai Li; Ming Gao; Erga Luo; Jingyi Wang; Xuebiao Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2023.106576&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2023.106576&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Jinkai Li; Jueying Chen; Heguang Liu;doi: 10.3390/su13126773
The growth of agricultural total factor productivity (TFP) is seen as a driving force for the sustainable development of agriculture. Meanwhile, the promotion of urbanization in China has exerted a profound impact on agricultural production. This paper calculates the agricultural TFP and analyzes the effect of urbanization. Firstly, the DEA-Malmquist method is used to calculate the dynamic change in agricultural TFP in China from 2004 to 2016. Secondly, the spatial spillover effect of urbanization on agricultural TFP is investigated by the spatial Durbin model. We found that: the average annual growth rate of agricultural TFP in China is 4.8% from 2004 to 2016; and the spillover effect of urbanization on agricultural TFP shows a U-shaped relationship, which means that urbanization has exerted a negative effect first and then a positive effect on agricultural TFP. Finally, the paper puts forward policy suggestions from the perspective of sustainable coordination of urbanization and agricultural production.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/12/6773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/12/6773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Zhexi Zhang; Jiashuo Wei; Jinkai Li; Yuankai Jia; Wei Wang; Jie Li; Ze Lei; Ming Gao;Continuous warming climate conditions have triggered numerous extreme weather events, exerting an unprecedented impact on agricultural and food production. Based on the panel data of 3,050 small farmers engaged in maize planting from 2009 to 2018 and collected by the National Rural Fixed Observation Point in China, this study uses the Transcendental Logarithmic Production Function model to estimate the impact of temperature, precipitation, and sunshine hours on maize output. Further, considering climate condition heterogeneity, this study analyzes the development potential of five major maize production areas in China. Results show that temperature and precipitation have a positive impact on maize output and that insufficient sunshine hour is an obstacle to the growth of maize output. Five major maize production areas are affected by climate condition differently, entailing the need for tailored response measures. Additionally, land, labor, and material capital input are key factors affecting maize output. Based on conclusion, we put forward the following suggestions to promote sustainable agricultural production, including strengthening the prediction of temperature, precipitation, and sunshine hours in major maize production areas, optimizing the agricultural production layout and the planting structure based on local endowment, enhancing farmers’ adaptive behavior training toward climate change, developing irrigation and water conservation projects.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.954940&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.954940&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Jinkai Li; Ming Gao; Erga Luo; Jingyi Wang; Xuebiao Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2023.106576&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2023.106576&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Jinkai Li; Jueying Chen; Heguang Liu;doi: 10.3390/su13126773
The growth of agricultural total factor productivity (TFP) is seen as a driving force for the sustainable development of agriculture. Meanwhile, the promotion of urbanization in China has exerted a profound impact on agricultural production. This paper calculates the agricultural TFP and analyzes the effect of urbanization. Firstly, the DEA-Malmquist method is used to calculate the dynamic change in agricultural TFP in China from 2004 to 2016. Secondly, the spatial spillover effect of urbanization on agricultural TFP is investigated by the spatial Durbin model. We found that: the average annual growth rate of agricultural TFP in China is 4.8% from 2004 to 2016; and the spillover effect of urbanization on agricultural TFP shows a U-shaped relationship, which means that urbanization has exerted a negative effect first and then a positive effect on agricultural TFP. Finally, the paper puts forward policy suggestions from the perspective of sustainable coordination of urbanization and agricultural production.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/12/6773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/12/6773/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13126773&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Zhexi Zhang; Jiashuo Wei; Jinkai Li; Yuankai Jia; Wei Wang; Jie Li; Ze Lei; Ming Gao;Continuous warming climate conditions have triggered numerous extreme weather events, exerting an unprecedented impact on agricultural and food production. Based on the panel data of 3,050 small farmers engaged in maize planting from 2009 to 2018 and collected by the National Rural Fixed Observation Point in China, this study uses the Transcendental Logarithmic Production Function model to estimate the impact of temperature, precipitation, and sunshine hours on maize output. Further, considering climate condition heterogeneity, this study analyzes the development potential of five major maize production areas in China. Results show that temperature and precipitation have a positive impact on maize output and that insufficient sunshine hour is an obstacle to the growth of maize output. Five major maize production areas are affected by climate condition differently, entailing the need for tailored response measures. Additionally, land, labor, and material capital input are key factors affecting maize output. Based on conclusion, we put forward the following suggestions to promote sustainable agricultural production, including strengthening the prediction of temperature, precipitation, and sunshine hours in major maize production areas, optimizing the agricultural production layout and the planting structure based on local endowment, enhancing farmers’ adaptive behavior training toward climate change, developing irrigation and water conservation projects.
Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.954940&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Frontiers in Environ... arrow_drop_down Frontiers in Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenvs.2022.954940&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
