Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Environ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Environmental Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of climate change on maize production: Empirical findings and implications for sustainable agricultural development

Authors: Zhexi Zhang; Jiashuo Wei; Jinkai Li; Yuankai Jia; Wei Wang; Jie Li; Ze Lei; +1 Authors

The impact of climate change on maize production: Empirical findings and implications for sustainable agricultural development

Abstract

Continuous warming climate conditions have triggered numerous extreme weather events, exerting an unprecedented impact on agricultural and food production. Based on the panel data of 3,050 small farmers engaged in maize planting from 2009 to 2018 and collected by the National Rural Fixed Observation Point in China, this study uses the Transcendental Logarithmic Production Function model to estimate the impact of temperature, precipitation, and sunshine hours on maize output. Further, considering climate condition heterogeneity, this study analyzes the development potential of five major maize production areas in China. Results show that temperature and precipitation have a positive impact on maize output and that insufficient sunshine hour is an obstacle to the growth of maize output. Five major maize production areas are affected by climate condition differently, entailing the need for tailored response measures. Additionally, land, labor, and material capital input are key factors affecting maize output. Based on conclusion, we put forward the following suggestions to promote sustainable agricultural production, including strengthening the prediction of temperature, precipitation, and sunshine hours in major maize production areas, optimizing the agricultural production layout and the planting structure based on local endowment, enhancing farmers’ adaptive behavior training toward climate change, developing irrigation and water conservation projects.

Keywords

maize output, coping measures, major production area, Environmental sciences, climate change, GE1-350, transcendental logarithmic production function

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold