- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Anna Joicy; Young-Chae Song; Jun Li; Sang-Eun Oh; Seong-Ho Jang; Yongtae Ahn;doi: 10.3390/en13123218
The effect of electrostatic fields on the bioelectrochemical removal of ammonium and nitrite from nitrogen-rich wastewater was investigated at strengths ranging from 0.2 to 0.67 V/cm in bioelectrochemical anaerobic batch reactors. The electrostatic field enriched the bulk solution with electroactive bacteria, including ammonium oxidizing exoelectrogens (AOE) and denitritating electrotrophs (DNE). The electroactive bacteria removed ammonium and nitrite simultaneously with alkalinity consumption through biological direct interspecies electron transfer (DIET) in the bulk solution. However, the total nitrogen (ammonium and nitrite) removal rate increased from 106.1 to 166.3 mg N/g volatile suspended solids (VSS).d as the electrostatic field strength increased from 0.2 to 0.67 V/cm. In the cyclic voltammogram, the redox peaks corresponding to the activities of AOE and DNE increased as the strength of the electrostatic field increased. Based on the microbial taxonomic profiling, the dominant genera involved in the bioelectrochemical nitrogen removal were identified as Pseudomonas, Petrimonas, DQ677001_g, Thiopseudomonas, Lentimicrobium, and Porphyromonadaceae_uc. This suggests that the electrostatic field of 0.67 V/cm significantly improves the bioelectrochemical nitrogen removal by enriching the bulk solution with AOE and DNE and promoting the biological DIET between them.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123218&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123218&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Piao, Dong-Mei; Song, Young-Chae; Kim, Dong-Hoon;doi: 10.3390/en11102577
This study demonstrated the enhancement of biogenic coal conversion to methane in a bioelectrochemical anaerobic reactor with polarized electrodes. The electrode with 1.0 V polarization increased the methane yield of coal to 52.5 mL/g lignite, which is the highest value reported to the best of our knowledge. The electrode with 2.0 V polarization shortened the adaptation time for methane production from coal, although the methane yield was slightly less than that of the 1.0 V electrode. After the methane production from coal in the bioelectrochemical reactor, the hydrolysis product, soluble organic residue, was still above 3600 mg chemical oxygen demand (COD)/L. The hydrolysis product has a substrate inhibition effect and inhibited further conversion of coal to methane. The dilution of the hydrolysis product mitigates the substrate inhibition to methane production, and a 5.7-fold dilution inhibited the methane conversion rate by 50%. An additional methane yield of 55.3 mL/g lignite was obtained when the hydrolysis product was diluted 10-fold in the anaerobic toxicity test. The biogenic conversion of coal to methane was significantly improved by the polarization of the electrode in the bioelectrochemical anaerobic reactor, and the dilution of the hydrolysis product further improved the methane yield.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102577&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102577&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Tae Ho Lee; Young-Chae Song; Booki Min; Sanath Kondaveeti; Jung Mi Moon;pmid: 26286838
An optimum electrode spacing of less than 1cm was determined for an air cathode microbial fuel cell (MFC) with a membrane electrode assembly (MEA) system. The lag period decreased as the electrode spacing increased and the voltage generation increased. Stable power density increased from 93 mW/m(2) to 248 mW/m(2) when the electrode distance increased from 0mm to 9 mm. In the polarization test, a maximum power density (400 mW/m(2)) was obtained at a distance of 6mm. The oxygen mass transfer coefficient (KO=4.60×10(-5) cm/s) with a 0mm spacing was five times higher than that at a 9 mm spacing (0.89×10(-5) cm/s). Long-term operation of the MFC exhibited relatively stable anode potentials of -285±25 (0 mm) and -517±20 mV (3, 6, and 9 mm) and a gradual decrease in cathode potential for all distances, especially with 0-mm spacing. The performance of air cathode MFCs can be improved using minimum electrode spacing rather than no spacing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2015.07.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2015.07.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Dong-Mei Piao; Young-Chae Song; Gyung-Geun Oh; Dong-Hoon Kim; Byung-Uk Bae;doi: 10.3390/en12214051
The bioelectrochemical conversion of coal to methane was investigated in an anaerobic batch reactor containing yeast extract and activated carbon. In anaerobic degradation of coal, yeast extract was a good stimulant for the growth of anaerobic microorganisms, and activated carbon played a positive role. An electrostatic field of 0.67 V/cm significantly improved methane production from coal by promoting direct and mediated interspecies electron transfers between exoelectrogenic bacteria and electrotrophic methanogenic archaea. However, the accumulation of coal degradation intermediates gradually repressed the conversion of coal to methane, and the methane yield of coal was only 31.2 mL/g lignite, indicating that the intermediates were not completely converted to methane. By supplementing yeast extract and seed sludge into the anaerobic reactor, the intermediate residue could be further converted to methane under an electrostatic field of 0.67 V/cm, and the total methane yield of coal increased to 98.0 mL/g lignite. The repression of the intermediates to the conversion of coal to methane was a kind of irreversible substrate inhibition. The irreversible substrate inhibition in the conversion of coal to methane could be attenuated under the electrostatic field of 0.67 V/cm by ensuring sufficient biomass through biostimulation or bioaugmentation.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4051/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214051&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4051/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214051&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Young-Chae Song; Tae-Seon Choi; Anna Joicy;pmid: 29597149
The treatment of low strength wastewater that has the level of discharge standard for wastewater treatment plant was studied using an upflow bioelectrochemical reactor with an applied voltage of 0.6 V. The direct interspecies electron transfer (DIET) between electroactive bacteria was activated in the upflow bioelectrochemical reactor, which improved the substrate affinity of bacteria. The effluent qualities in COD and ammonia nitrogen was stable at less than 3.5 mg/L and 7.46 mg/L at 1 h of hydraulic retention time, respectively. The conductive materials, including conductive sheets and conductive particles, further increased the biomass retention and the DIET by altering the abundance of dominant bacterial groups. The effluent qualities in COD and ammonia nitrogen was improved up to 1.98 mg/L and 2.65 mg/L, respectively, by the conductive sheets. The upflow bioelectrochemical reactor with conductive materials is a good tertiary treatment process for improving the quality of the final effluent discharged from wastewater treatment plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.03.049&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.03.049&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Young-Chae Song; Sang-Jo Kwon; Jung-Hui Woo;pmid: 15026219
The performance of thermophilic and mesophilic temperature co-phase anaerobic digestions for sewage sludge, using the exchange process of the digesting sludge between spatially separated mesophilic and thermophilic digesters, was examined, and compared to single-stage mesophilic and thermophilic anaerobic digestions. The reduction of volatile solids from the temperature co-phase anaerobic digestion system was dependent on the sludge exchange rate, but was 50.7-58.8%, which was much higher than 46.8% of single-stage thermophilic digestion, as well as 43.5% of the mesophilic digestion. The specific methane yield was 424-468 mL CH(4) per gram volatile solids removed, which was as good as that of single-stage mesophilic anaerobic digestion. The process stability and the effluent quality in terms of volatile fatty acids and soluble chemical oxygen demand of the temperature co-phase anaerobic digestion system were considerably better than those of the single-stage mesophilic anaerobic processes. The destruction of total coliform in the temperature co-phase system was 98.5-99.6%, which was similar to the single-stage thermophilic digestion. The higher performances on the volatile solid and pathogen reduction, and stable operation of the temperature co-phase anaerobic system might be attributable to the well-functioned thermophilic digester, sharing nutrients and intermediates for anaerobic microorganisms, and selection of higher substrate affinity anaerobic microorganisms in the co-phase system, as a result of the sludge exchange between the mesophilic and thermophilic digesters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2003.12.019&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2003.12.019&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Suhan Kim; Veeriah Jegatheesan; Ho Kyong Shon; Young-Chae Song; Minseok Kim;pmid: 29807328
Anaerobic membrane bioreactor (AnMBR) using microfiltration (MF) or ultrafiltration (UF) membranes was introduced to enhance poor biomass retention of conventional anaerobic digestion (CAD). Recently, forward osmosis (FO) membrane have been applied to AnMBR, which is called AnFOMBR. FO membrane assures not only high biomass retention but also high removal efficiency for low molecular weight (LMW) matters. Methane production rates in CAD, AnMBR, and AnFOMBR were compared using a modified IWA anaerobic digestion model No. 1 (ADM1) in this work. Accumulation of biomass in AnMBR/AnFOMBR results in enhanced biochemical reaction and gains more methane production. AnFOMBR may experience a significant inhibition by accumulated free ammonia and cations, although concentrated soluble substrates rejected by FO membrane are favorable for more methane production. Rejection rate of inorganic nitrogen is a key parameter to determine the inhibition in methane production of AnFOMBR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.04.125&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.04.125&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Anna Joicy; Young-Chae Song; Jun Li; Sang-Eun Oh; Seong-Ho Jang; Yongtae Ahn;doi: 10.3390/en13123218
The effect of electrostatic fields on the bioelectrochemical removal of ammonium and nitrite from nitrogen-rich wastewater was investigated at strengths ranging from 0.2 to 0.67 V/cm in bioelectrochemical anaerobic batch reactors. The electrostatic field enriched the bulk solution with electroactive bacteria, including ammonium oxidizing exoelectrogens (AOE) and denitritating electrotrophs (DNE). The electroactive bacteria removed ammonium and nitrite simultaneously with alkalinity consumption through biological direct interspecies electron transfer (DIET) in the bulk solution. However, the total nitrogen (ammonium and nitrite) removal rate increased from 106.1 to 166.3 mg N/g volatile suspended solids (VSS).d as the electrostatic field strength increased from 0.2 to 0.67 V/cm. In the cyclic voltammogram, the redox peaks corresponding to the activities of AOE and DNE increased as the strength of the electrostatic field increased. Based on the microbial taxonomic profiling, the dominant genera involved in the bioelectrochemical nitrogen removal were identified as Pseudomonas, Petrimonas, DQ677001_g, Thiopseudomonas, Lentimicrobium, and Porphyromonadaceae_uc. This suggests that the electrostatic field of 0.67 V/cm significantly improves the bioelectrochemical nitrogen removal by enriching the bulk solution with AOE and DNE and promoting the biological DIET between them.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123218&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/12/3218/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13123218&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Piao, Dong-Mei; Song, Young-Chae; Kim, Dong-Hoon;doi: 10.3390/en11102577
This study demonstrated the enhancement of biogenic coal conversion to methane in a bioelectrochemical anaerobic reactor with polarized electrodes. The electrode with 1.0 V polarization increased the methane yield of coal to 52.5 mL/g lignite, which is the highest value reported to the best of our knowledge. The electrode with 2.0 V polarization shortened the adaptation time for methane production from coal, although the methane yield was slightly less than that of the 1.0 V electrode. After the methane production from coal in the bioelectrochemical reactor, the hydrolysis product, soluble organic residue, was still above 3600 mg chemical oxygen demand (COD)/L. The hydrolysis product has a substrate inhibition effect and inhibited further conversion of coal to methane. The dilution of the hydrolysis product mitigates the substrate inhibition to methane production, and a 5.7-fold dilution inhibited the methane conversion rate by 50%. An additional methane yield of 55.3 mL/g lignite was obtained when the hydrolysis product was diluted 10-fold in the anaerobic toxicity test. The biogenic conversion of coal to methane was significantly improved by the polarization of the electrode in the bioelectrochemical anaerobic reactor, and the dilution of the hydrolysis product further improved the methane yield.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102577&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/10/2577/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102577&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Tae Ho Lee; Young-Chae Song; Booki Min; Sanath Kondaveeti; Jung Mi Moon;pmid: 26286838
An optimum electrode spacing of less than 1cm was determined for an air cathode microbial fuel cell (MFC) with a membrane electrode assembly (MEA) system. The lag period decreased as the electrode spacing increased and the voltage generation increased. Stable power density increased from 93 mW/m(2) to 248 mW/m(2) when the electrode distance increased from 0mm to 9 mm. In the polarization test, a maximum power density (400 mW/m(2)) was obtained at a distance of 6mm. The oxygen mass transfer coefficient (KO=4.60×10(-5) cm/s) with a 0mm spacing was five times higher than that at a 9 mm spacing (0.89×10(-5) cm/s). Long-term operation of the MFC exhibited relatively stable anode potentials of -285±25 (0 mm) and -517±20 mV (3, 6, and 9 mm) and a gradual decrease in cathode potential for all distances, especially with 0-mm spacing. The performance of air cathode MFCs can be improved using minimum electrode spacing rather than no spacing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2015.07.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bioelechem.2015.07.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Dong-Mei Piao; Young-Chae Song; Gyung-Geun Oh; Dong-Hoon Kim; Byung-Uk Bae;doi: 10.3390/en12214051
The bioelectrochemical conversion of coal to methane was investigated in an anaerobic batch reactor containing yeast extract and activated carbon. In anaerobic degradation of coal, yeast extract was a good stimulant for the growth of anaerobic microorganisms, and activated carbon played a positive role. An electrostatic field of 0.67 V/cm significantly improved methane production from coal by promoting direct and mediated interspecies electron transfers between exoelectrogenic bacteria and electrotrophic methanogenic archaea. However, the accumulation of coal degradation intermediates gradually repressed the conversion of coal to methane, and the methane yield of coal was only 31.2 mL/g lignite, indicating that the intermediates were not completely converted to methane. By supplementing yeast extract and seed sludge into the anaerobic reactor, the intermediate residue could be further converted to methane under an electrostatic field of 0.67 V/cm, and the total methane yield of coal increased to 98.0 mL/g lignite. The repression of the intermediates to the conversion of coal to methane was a kind of irreversible substrate inhibition. The irreversible substrate inhibition in the conversion of coal to methane could be attenuated under the electrostatic field of 0.67 V/cm by ensuring sufficient biomass through biostimulation or bioaugmentation.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4051/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214051&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/21/4051/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12214051&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Young-Chae Song; Tae-Seon Choi; Anna Joicy;pmid: 29597149
The treatment of low strength wastewater that has the level of discharge standard for wastewater treatment plant was studied using an upflow bioelectrochemical reactor with an applied voltage of 0.6 V. The direct interspecies electron transfer (DIET) between electroactive bacteria was activated in the upflow bioelectrochemical reactor, which improved the substrate affinity of bacteria. The effluent qualities in COD and ammonia nitrogen was stable at less than 3.5 mg/L and 7.46 mg/L at 1 h of hydraulic retention time, respectively. The conductive materials, including conductive sheets and conductive particles, further increased the biomass retention and the DIET by altering the abundance of dominant bacterial groups. The effluent qualities in COD and ammonia nitrogen was improved up to 1.98 mg/L and 2.65 mg/L, respectively, by the conductive sheets. The upflow bioelectrochemical reactor with conductive materials is a good tertiary treatment process for improving the quality of the final effluent discharged from wastewater treatment plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.03.049&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.03.049&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004Publisher:Elsevier BV Authors: Young-Chae Song; Sang-Jo Kwon; Jung-Hui Woo;pmid: 15026219
The performance of thermophilic and mesophilic temperature co-phase anaerobic digestions for sewage sludge, using the exchange process of the digesting sludge between spatially separated mesophilic and thermophilic digesters, was examined, and compared to single-stage mesophilic and thermophilic anaerobic digestions. The reduction of volatile solids from the temperature co-phase anaerobic digestion system was dependent on the sludge exchange rate, but was 50.7-58.8%, which was much higher than 46.8% of single-stage thermophilic digestion, as well as 43.5% of the mesophilic digestion. The specific methane yield was 424-468 mL CH(4) per gram volatile solids removed, which was as good as that of single-stage mesophilic anaerobic digestion. The process stability and the effluent quality in terms of volatile fatty acids and soluble chemical oxygen demand of the temperature co-phase anaerobic digestion system were considerably better than those of the single-stage mesophilic anaerobic processes. The destruction of total coliform in the temperature co-phase system was 98.5-99.6%, which was similar to the single-stage thermophilic digestion. The higher performances on the volatile solid and pathogen reduction, and stable operation of the temperature co-phase anaerobic system might be attributable to the well-functioned thermophilic digester, sharing nutrients and intermediates for anaerobic microorganisms, and selection of higher substrate affinity anaerobic microorganisms in the co-phase system, as a result of the sludge exchange between the mesophilic and thermophilic digesters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2003.12.019&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2003.12.019&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Suhan Kim; Veeriah Jegatheesan; Ho Kyong Shon; Young-Chae Song; Minseok Kim;pmid: 29807328
Anaerobic membrane bioreactor (AnMBR) using microfiltration (MF) or ultrafiltration (UF) membranes was introduced to enhance poor biomass retention of conventional anaerobic digestion (CAD). Recently, forward osmosis (FO) membrane have been applied to AnMBR, which is called AnFOMBR. FO membrane assures not only high biomass retention but also high removal efficiency for low molecular weight (LMW) matters. Methane production rates in CAD, AnMBR, and AnFOMBR were compared using a modified IWA anaerobic digestion model No. 1 (ADM1) in this work. Accumulation of biomass in AnMBR/AnFOMBR results in enhanced biochemical reaction and gains more methane production. AnFOMBR may experience a significant inhibition by accumulated free ammonia and cations, although concentrated soluble substrates rejected by FO membrane are favorable for more methane production. Rejection rate of inorganic nitrogen is a key parameter to determine the inhibition in methane production of AnFOMBR.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.04.125&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2018.04.125&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
