- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Rock Keey Liew; Shengbo Ge; Shengbo Ge; Christian Sonne; Changlei Xia; Chi Cheng Chong; Xin Yi Lim; Peter Nai Yuh Yek; Su Shiung Lam; Su Shiung Lam; Nyuk Ling Ma; Shin Ying Foong; Shin Ying Foong; Wai Lun Nam; Wan Adibah Wan Mahari; Wanxi Peng; Chin Mei Liew;Abstract The escalating consumption of fossil fuels and dumping of palm kernel shells (PKS) drives biofuel production to improve supply and waste disposal. To convert PKS into modified biochar (MBC) value-added solid fuel, we use microwave vacuum pyrolysis accompanied by sodium-potassium hydroxide mixture modification. First, PKS underwent microwave vacuum pyrolysis to produce biochar, and then it was chemically activated using sodium-potassium hydroxide mixture. The MBC surface morphology, porous characteristics, proximate content, and energy properties depended on microwave irradiation period and power. High yields (79 ± 1.5 wt%) were recorded at microwave power 700 W and irradiation period of 10 min, giving a high BET surface area (1320 m2/g) and pore volume (0.70 cm3/g). The MBC had acceptable low content of ash, nitrogen, and no sulphur, demonstrating its potential as an environmental friendly fuel to replace conventional coal in combustion. The MBC shows high energy yield (≤90.5%), fuel ratio (≤26.47), and heating value (≤28.69 MJ/kg) comparable to conventional fuels, thus showing desirable solid fuel properties. Energy balance analysis shows positive energy ratio of up to 10 and net energy output of up to 24.47 MJ/kg, recovering a product with a higher energy content compared to electrical power input for the pyrolysis operation. These findings demonstrate the exceptional potential of the MBC produced by this innovative approach for bioenergy generation that per se will reduce the emissions of greenhouse gases and thereby reducing global warming and climate change.
PURE Aarhus Universi... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PURE Aarhus Universi... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Vaibhav Vilas Andhalkar; Shin Ying Foong; Seng Hon Kee; Su Shiung Lam; Yi Herng Chan; Ridha Djellabi; Kesaven Bhubalan; Francesc Medina; Magda Constantí;AbstractTo support and move toward a sustainable bioeconomy, the production of polyhydroxyalkanoates (PHAs) using renewable biomass has acquired more attention. However, expensive biomass pretreatment and low yield of PHAs pose significant disadvantages in its large‐scale production. To overcome such limitations, the most recent advances in metabolic engineering strategies used to develop high‐performance strains that are leading to a new manufacturing concept converting biomass to PHAs with co‐products such as amino acids, proteins, biohydrogen, biosurfactants, and various fine chemicals are critically summarized. This review article presents a comprehensive roadmap that highlights the integrated biorefinery strategies, lifecycle analysis, and techno‐economic assessment for sustainable and economic PHAs production. Finally, current and future challenges that must be addressed to transfer this technology to real‐world applications are reviewed.
Macromolecular Mater... arrow_drop_down Macromolecular Materials and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Macromolecular Mater... arrow_drop_down Macromolecular Materials and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Shin Ying Foong; Yi Herng Chan; Adrian Chun Minh Loy; Bing Shen How; Arularasu Muthaliar Tamothran; Andrew Jun Kit Yip; Rock Keey Liew; Wanxi Peng; Aage KO. Alstrup; Su Shiung Lam; Christian Sonne;The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Manish Kumar; Shiv Bolan; Lokesh P. Padhye; Muxina Konarova; Shin Ying Foong; Su Shiung Lam; Stuart Wagland; Rong Cao; Yang Li; Nuno Batalha; Mohamed H.M. Ahmed; Ashok Pandey; Kadambot H. M. Siddique; Hailong Wang; Jörg Rinklebe; Nanthi Bolan;Il a été démontré que la production de plastique et sa gestion et son élimination non planifiées polluent les environnements terrestres, aquatiques et atmosphériques. Les plastiques dérivés du pétrole ne se décomposent pas et ont tendance à persister plus longtemps dans l'environnement. Les plastiques peuvent être ingérés et s'accumuler dans les tissus des animaux terrestres et aquatiques, ce qui peut entraver leur croissance et leur développement. Les produits pétrochimiques sont les principales matières premières pour la fabrication des plastiques. Les déchets plastiques peuvent être récupérés pour être convertis en produits pétrochimiques à valeur ajoutée, y compris le charbon aromatique, l'hydrogène, le gaz de synthèse et le pétrole brut biologique à l'aide de diverses technologies, notamment la thermochimie, la conversion catalytique et la chimiolyse. Cette revue se concentre sur les technologies, les opportunités, les défis et les perspectives de récupération des déchets plastiques pour la conversion en produits pétrochimiques à valeur ajoutée. L'examen explore également les approches techniques et de gestion pour la conversion des déchets plastiques en produits pétrochimiques en ce qui concerne la faisabilité commerciale et la durabilité économique et environnementale. En outre, ce travail d'examen fournit une discussion détaillée sur les opportunités et les défis associés aux récentes technologies de conversion thermochimique et catalytique adoptées pour la récupération des déchets plastiques en combustibles et produits chimiques. L'examen recommande également des perspectives de recherche future pour améliorer les processus et le rapport coût-efficacité des technologies prometteuses pour la conversion des déchets plastiques en produits pétrochimiques. Il est prévu que cet examen surmonte les lacunes en matière de connaissances sur les technologies de conversion et contribue davantage aux approches durables émergentes pour l'exploitation des déchets plastiques pour des produits à valeur ajoutée. Se ha demostrado que la producción de plástico y su gestión y eliminación no planificadas contaminan los entornos terrestres, acuáticos y atmosféricos. Los plásticos derivados del petróleo no se descomponen y tienden a persistir en el entorno durante más tiempo. Los plásticos se pueden ingerir y acumular en los tejidos de los animales terrestres y acuáticos, lo que puede impedir su crecimiento y desarrollo. Los productos petroquímicos son las principales materias primas para la fabricación de plásticos. Los residuos plásticos se pueden recuperar para convertirlos en productos petroquímicos de valor añadido, como carbón aromático, hidrógeno, gas de síntesis y petróleo biocrudo, utilizando diversas tecnologías, como la termoquímica, la conversión catalítica y la quimiolisis. Esta revisión se centra en las tecnologías, oportunidades, desafíos y perspectivas de la recuperación de residuos plásticos para su conversión en productos petroquímicos de valor añadido. La revisión también explora los enfoques técnicos y de gestión para la conversión de desechos plásticos en productos petroquímicos con respecto a la viabilidad comercial y la sostenibilidad económica y ambiental. Además, este trabajo de revisión proporciona una discusión detallada sobre las oportunidades y los desafíos asociados con las recientes tecnologías de conversión termoquímica y catalítica adoptadas para la recuperación de residuos plásticos en combustibles y productos químicos. La revisión también recomienda perspectivas de investigación futura para mejorar los procesos y la rentabilidad de las tecnologías prometedoras para la conversión de residuos plásticos en productos petroquímicos. Se prevé que esta revisión supere las lagunas de conocimiento sobre las tecnologías de conversión y contribuya aún más a los enfoques sostenibles emergentes para explotar los desechos plásticos para productos de valor agregado. Plastic production and its unplanned management and disposal, has been shown to pollute terrestrial, aquatic, and atmospheric environments. Petroleum-derived plastics do not decompose and tend to persist in the surrounding environment for longer time. Plastics can be ingested and accumulate into the tissues of both terrestrial and aquatic animals, which can impede their growth and development. Petrochemicals are the primary feedstocks for the manufacture of plastics. The plastic wastes can be retrieved back for conversion to value added petrochemicals including aromatic char, hydrogen, synthesis gas, and bio-crude oil using various technologies including thermochemical, catalytic conversion and chemolysis. This review focusses on technologies, opportunities, challenges and outlooks of retrieving back plastic wastes for conversion to value added petrochemicals. The review also explores both the technical and management approaches for conversion of plastic wastes to petrochemicals in regard to commercial feasibility, and economic and environmental sustainability. Further, this review work provides a detailed discussion on opportunities and challenges associated with recent thermochemical and catalytic conversion technologies adopted for retrieving plastic waste to fuels and chemicals. The review also recommends prospects for future research to improve the processes and cost-efficiency of promising technologies for conversion of plastic wastes to petrochemicals. It is envisioned that this review would overcomes the knowledge gaps on conversion technologies and further contribute in emerging sustainable approaches for exploiting plastic wastes for value-added products. وقد تبين أن إنتاج البلاستيك وإدارته والتخلص منه بشكل غير مخطط له يلوث البيئات الأرضية والمائية والغلاف الجوي. لا تتحلل المواد البلاستيكية المشتقة من البترول وتميل إلى الاستمرار في البيئة المحيطة لفترة أطول. يمكن ابتلاع البلاستيك وتراكمه في أنسجة كل من الحيوانات البرية والمائية، مما قد يعيق نموها وتطورها. البتروكيماويات هي المواد الأولية لتصنيع البلاستيك. يمكن استرجاع النفايات البلاستيكية مرة أخرى لتحويلها إلى مواد بتروكيماوية ذات قيمة مضافة بما في ذلك الفحم العطري والهيدروجين وغاز التخليق وزيت الخام الحيوي باستخدام تقنيات مختلفة بما في ذلك التحويل الكيميائي الحراري والتحفيز والتحلل الكيميائي. تركز هذه المراجعة على تقنيات وفرص وتحديات وتوقعات استعادة النفايات البلاستيكية لتحويلها إلى مواد بتروكيماوية ذات قيمة مضافة. كما يستكشف الاستعراض كلا من النهجين التقني والإداري لتحويل النفايات البلاستيكية إلى البتروكيماويات فيما يتعلق بالجدوى التجارية والاستدامة الاقتصادية والبيئية. علاوة على ذلك، يقدم عمل المراجعة هذا مناقشة مفصلة حول الفرص والتحديات المرتبطة بتقنيات التحويل الكيميائية الحرارية والحفازة الحديثة المعتمدة لاستعادة النفايات البلاستيكية إلى الوقود والمواد الكيميائية. توصي المراجعة أيضًا بآفاق البحث المستقبلي لتحسين العمليات وفعالية تكلفة التقنيات الواعدة لتحويل النفايات البلاستيكية إلى البتروكيماويات. ومن المتوخى أن تتغلب هذه المراجعة على الفجوات المعرفية المتعلقة بتكنولوجيات التحويل وأن تسهم كذلك في النهج المستدامة الناشئة لاستغلال النفايات البلاستيكية في المنتجات ذات القيمة المضافة.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2022 DenmarkPublisher:Elsevier BV Mustafa Man; Hwai Chyuan Ong; Christian Sonne; Christian Sonne; Wan Adibah Wan Mahari; Wan Adibah Wan Mahari; Tan Suet May Amelia; Yafeng Yang; Meththika Vithanage; Seng Hon Kee; Su Shiung Lam; Su Shiung Lam; Shin Ying Foong; Kesaven Bhubalan;En el presente estudio, se utilizó la copirólisis por microondas (MCP) para convertir simultáneamente los desechos plásticos médicos (MPW) y el aceite de freír residual (WFO) en productos de aceite líquido. El proceso MCP demostró una velocidad de calentamiento más rápida (24 °C/min) y un tiempo de proceso más corto (20 min) en comparación con las técnicas de pirólisis convencionales que convierten MPW y WFO en aceite líquido (≥80% en peso). El MCP redujo el contenido de oxígeno de 25.7 a 9.82% en peso en aceite líquido que abarca hidrocarburos alifáticos ligeros que van de C10 a C28, generando un nuevo combustible líquido sostenible. El líquido que tiene un alto contenido de carbono (aproximadamente 77.1% enpeso) y una baja relación de carbono a nitrógeno (27.9) es una materia prima energética adecuada para la producción de bioplásticos de polihidroxialcanoato (PHA) en forma de poli3-hidroxibutirato [P(3HB)]. El aceite líquido actuó como fuente de energía para el crecimiento de Bacillus sp. Durante la fermentación microbiana, produciendo aproximadamente 11% (p/p) de P(3HB). Los bioplásticos son biodegradables, biocompatibles con los seres humanos y no tóxicos para los organismos marinos, lo que representa un valioso aditivo en la producción de cosméticos, detergentes y como andamios médicos para la ingeniería de tejidos. Los resultados indican el prometedor reciclaje de productos de desecho mediante este enfoque a través de la biorrefinería pirolítica en combustibles de valor agregado y productos bioplásticos, siendo importante para la futura producción sostenible de recursos renovables. Dans la présente étude, la co-pyrolyse par micro-ondes (MCP) a été utilisée pour convertir simultanément les déchets plastiques médicaux (MPW) et les déchets d'huile de friture (WFO) en produits pétroliers liquides. Le procédé MCP a démontré une vitesse de chauffage plus rapide (24 °C/min) et un temps de traitement plus court (20 min) par rapport aux techniques de pyrolyse conventionnelles convertissant le MPW et le WFO en huile liquide (≥80 % en poids). Le MCP a réduit la teneur en oxygène de 25,7 à 9,82 % en poids dans l'huile liquide comprenant des hydrocarbures aliphatiques légers allant de C10 à C28, générant un nouveau carburant liquide durable. Le liquide ayant une teneur élevée en carbone (environ 77,1 % en poids) et un faible rapport carbone/azote (27,9) est une charge d'alimentation énergétique appropriée pour la production de bioplastique polyhydroxyalcanoate (PHA) sous forme de poly3-hydroxybutyrate [P(3HB)]. L'huile liquide a servi de source d'énergie pour la croissance de Bacillus sp. Pendant la fermentation microbienne, produisant environ 11 % (p/p) de P(3HB). Les bioplastiques sont biodégradables, biocompatibles avec les humains et non toxiques pour les organismes marins, représentant un additif précieux dans la production de cosmétiques, de détergents et en tant qu'échafaudages médicaux pour l'ingénierie tissulaire. Les résultats indiquent que le recyclage prometteur des déchets par cette approche à travers la bioraffinerie pyrolytique en carburant à valeur ajoutée et en produits bioplastiques est important pour la future production durable de ressources renouvelables. In the present study, microwave co-pyrolysis (MCP) was used to simultaneously convert medical plastic waste (MPW) and waste frying oil (WFO) into liquid oil products. The MCP process demonstrated a faster heating rate (24 °C/min) and shorter process time (20 min) compared to conventional pyrolysis techniques converting MPW and WFO into liquid oil (≥80 wt%). The MCP reduced the oxygen content from 25.7 to 9.82 wt% in liquid oil encompassing light aliphatic hydrocarbons ranging from C10 to C28, generating a novel sustainable liquid fuel. The liquid having a high carbon content (approximately 77.1 wt%) and low carbon to nitrogen ratio (27.9) is a suitable energy feedstock for polyhydroxyalkanoate (PHA) bioplastic production in the form of poly3-hydroxybutyrate [P(3HB)]. The liquid oil acted as an energy source for the growth of Bacillus sp. During microbial fermentation, yielding approximately 11% (w/w) P(3HB). Bioplastics are biodegradable, biocompatible with humans and non-toxic to marine organisms, representing a valuable additive in the production of cosmetics, detergents, and as medical scaffolds for tissue engineering. The results indicate the promising upcycling of waste products by this approach through pyrolytic biorefinery into value-added fuel and bioplastic products, being important for the future sustainable production of renewable resources. في هذه الدراسة، تم استخدام الانحلال الحراري المشترك للميكروويف (MCP) لتحويل النفايات البلاستيكية الطبية (MPW) وزيت قلي النفايات (WFO) في وقت واحد إلى منتجات زيتية سائلة. أظهرت عملية MCP معدل تسخين أسرع (24 درجة مئوية/دقيقة) ووقت معالجة أقصر (20 دقيقة) مقارنة بتقنيات التحلل الحراري التقليدية التي تحول وزارة الأشغال العامة و WFO إلى زيت سائل (≥80 ٪ بالوزن). قلل MCP من محتوى الأكسجين من 25.7 إلى 9.82 ٪ بالوزن في الزيت السائل الذي يشمل الهيدروكربونات الأليفاتية الخفيفة التي تتراوح من C10 إلى C28، مما يولد وقودًا سائلًا مستدامًا جديدًا. السائل الذي يحتوي على نسبة عالية من الكربون (حوالي 77.1 ٪ بالوزن) ونسبة منخفضة من الكربون إلى النيتروجين (27.9) هو مادة تغذية مناسبة للطاقة لإنتاج البلاستيك الحيوي للبولي هيدروكسي ألكانوات (PHA) في شكل بولي 3 -هيدروكسي بوتيرات [P(3HB)]. كان الزيت السائل بمثابة مصدر للطاقة لنمو Bacillus sp. أثناء التخمير الميكروبي، ينتج حوالي 11 ٪ (وزن/وزن) P(3HB). اللدائن الحيوية قابلة للتحلل الحيوي، ومتوافقة حيويًا مع البشر وغير سامة للكائنات البحرية، وتمثل مادة مضافة قيمة في إنتاج مستحضرات التجميل والمنظفات، وكسقالات طبية لهندسة الأنسجة. تشير النتائج إلى إعادة التدوير الواعدة للنفايات من خلال هذا النهج من خلال التكرير الحيوي للتحلل الحراري إلى وقود ذي قيمة مضافة ومنتجات بلاستيكية حيوية، كونها مهمة للإنتاج المستدام المستقبلي للموارد المتجددة.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Rock Keey Liew; Yoke Wang Cheng; Mortaza Aghbashlo; Shin Ying Foong; Shin Ying Foong; Quyet Van Le; Peter Nai Yuh Yek; Dai-Viet N. Vo; Wan Adibah Wan Mahari; Meisam Tabatabaei; Christian Sonne; Su Shiung Lam; Su Shiung Lam; Xie Yi Lee; Chai Sean Han; Wanxi Peng; Yafeng Yang;Abstract Biomass waste represents the promising surrogate of fossil fuels for energy recovery and valorization into value-added products. Among thermochemical conversion techniques of biomass, pyrolysis appears to be most alluring owing to its low pollutant emission and diverse products formation. The current pyrolysis applications for valorization of biomass waste is reviewed, covering the key concepts, pyrolysis mode, operating parameters and products. To date, existing types of pyrolysis include conventional pyrolysis (poor heat transfer due to non-selective heating), vacuum pyrolysis (lower process temperature because of vacuum), solar pyrolysis (entirely “green” with solar-powered), and a newly touted microwave pyrolysis. In microwave pyrolysis of biomass, the heat transfer is more efficient as the heat is generated within the core of material by the interaction of microwave with biomass. The plausible mechanisms of microwave heating are dipole polarization, ionic conduction and interfacial polarization. The lack of top-tier reactor design is identified as the main obstacle that impedes the commercialization of microwave pyrolysis in biomass recycling. Based on the existing works, it is surmised that microwave pyrolysis of biomass produces solid biochar as a main product. To confront the great market demand of activated biochar, it is proposed that the solid char could be upgraded into engineered activated biochar with desirable properties for wide application in pollution control, catalysis and energy storage. Hence, the production of engineered activated biochar from microwave pyrolysis process and its applications are reviewed and explicitly discussed to fill the research gap, and the key implications for future development are highlighted.
PURE Aarhus Universi... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PURE Aarhus Universi... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Rock Keey Liew; Shengbo Ge; Shengbo Ge; Christian Sonne; Changlei Xia; Chi Cheng Chong; Xin Yi Lim; Peter Nai Yuh Yek; Su Shiung Lam; Su Shiung Lam; Nyuk Ling Ma; Shin Ying Foong; Shin Ying Foong; Wai Lun Nam; Wan Adibah Wan Mahari; Wanxi Peng; Chin Mei Liew;Abstract The escalating consumption of fossil fuels and dumping of palm kernel shells (PKS) drives biofuel production to improve supply and waste disposal. To convert PKS into modified biochar (MBC) value-added solid fuel, we use microwave vacuum pyrolysis accompanied by sodium-potassium hydroxide mixture modification. First, PKS underwent microwave vacuum pyrolysis to produce biochar, and then it was chemically activated using sodium-potassium hydroxide mixture. The MBC surface morphology, porous characteristics, proximate content, and energy properties depended on microwave irradiation period and power. High yields (79 ± 1.5 wt%) were recorded at microwave power 700 W and irradiation period of 10 min, giving a high BET surface area (1320 m2/g) and pore volume (0.70 cm3/g). The MBC had acceptable low content of ash, nitrogen, and no sulphur, demonstrating its potential as an environmental friendly fuel to replace conventional coal in combustion. The MBC shows high energy yield (≤90.5%), fuel ratio (≤26.47), and heating value (≤28.69 MJ/kg) comparable to conventional fuels, thus showing desirable solid fuel properties. Energy balance analysis shows positive energy ratio of up to 10 and net energy output of up to 24.47 MJ/kg, recovering a product with a higher energy content compared to electrical power input for the pyrolysis operation. These findings demonstrate the exceptional potential of the MBC produced by this innovative approach for bioenergy generation that per se will reduce the emissions of greenhouse gases and thereby reducing global warming and climate change.
PURE Aarhus Universi... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PURE Aarhus Universi... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Vaibhav Vilas Andhalkar; Shin Ying Foong; Seng Hon Kee; Su Shiung Lam; Yi Herng Chan; Ridha Djellabi; Kesaven Bhubalan; Francesc Medina; Magda Constantí;AbstractTo support and move toward a sustainable bioeconomy, the production of polyhydroxyalkanoates (PHAs) using renewable biomass has acquired more attention. However, expensive biomass pretreatment and low yield of PHAs pose significant disadvantages in its large‐scale production. To overcome such limitations, the most recent advances in metabolic engineering strategies used to develop high‐performance strains that are leading to a new manufacturing concept converting biomass to PHAs with co‐products such as amino acids, proteins, biohydrogen, biosurfactants, and various fine chemicals are critically summarized. This review article presents a comprehensive roadmap that highlights the integrated biorefinery strategies, lifecycle analysis, and techno‐economic assessment for sustainable and economic PHAs production. Finally, current and future challenges that must be addressed to transfer this technology to real‐world applications are reviewed.
Macromolecular Mater... arrow_drop_down Macromolecular Materials and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Macromolecular Mater... arrow_drop_down Macromolecular Materials and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Elsevier BV Shin Ying Foong; Yi Herng Chan; Adrian Chun Minh Loy; Bing Shen How; Arularasu Muthaliar Tamothran; Andrew Jun Kit Yip; Rock Keey Liew; Wanxi Peng; Aage KO. Alstrup; Su Shiung Lam; Christian Sonne;The growth of global population continuously increases the demands for agroforestry-derived products, underpinning a sustainable growth of energy matrix in the sectors of food security, transportation, and industrial is momentous. The high demand for the sustainable energy sources has led to an increase in the application of pesticides associated with growing crops for the production of biofuel. In 2019, the global consumption of pesticides was 4.2 million tonnes. Case studies on life cycle assessment (LCA) of pesticides showed that toxicity is the major severe impact of pesticide usage, contributing to human toxicity (∼70%) and freshwater eco-toxicity (>50%). This alarming situation needs a solution as conventional pesticides pose various negative impacts to human and the environment, rendering the biofuel production process unsustainable. In this review, we focus on the interaction between pesticide use, biofuel production, food security for a sustainable balancing in between government benefits, environmental, and human health, aiming to track the implications and impact to the global efforts towards achieving the UN Sustainable Development Goals (SDGs). Even though, there are strict government regulations and legislations pertaining to pesticide use, and policies devised as guidelines for agroforestry sectors to implement and monitor these measures, the discrepancies still exist in between national and supranational entities. To cater the above issue, many efforts have been made to upscale the biofuel production, for example, the United States, Brazil, China and Indonesia have ventured into biofuels production from non-food-crops based feedstock while other developing nations are rapidly catching up. In this perspective, a sustainable nexus between Biofuels-Pesticides-Agroforestry (BPA) is essential to create a sustainable roadmap toward the UN SDGs, to fulfilling the energy, food, and land security. The contribution of technologies in BPA includes genetic modified crops, integrated pest and weed management with controlled release pesticides, use of nano-biopesticides is being reviewed. As a whole, the concept of biofuel processing complex (BPC) and farmers upskilling, together with the effective implementation of efficient policies and Internet of Things (IoT) would be the key to drive the BPA nexus towards fulfilment of SDGs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Manish Kumar; Shiv Bolan; Lokesh P. Padhye; Muxina Konarova; Shin Ying Foong; Su Shiung Lam; Stuart Wagland; Rong Cao; Yang Li; Nuno Batalha; Mohamed H.M. Ahmed; Ashok Pandey; Kadambot H. M. Siddique; Hailong Wang; Jörg Rinklebe; Nanthi Bolan;Il a été démontré que la production de plastique et sa gestion et son élimination non planifiées polluent les environnements terrestres, aquatiques et atmosphériques. Les plastiques dérivés du pétrole ne se décomposent pas et ont tendance à persister plus longtemps dans l'environnement. Les plastiques peuvent être ingérés et s'accumuler dans les tissus des animaux terrestres et aquatiques, ce qui peut entraver leur croissance et leur développement. Les produits pétrochimiques sont les principales matières premières pour la fabrication des plastiques. Les déchets plastiques peuvent être récupérés pour être convertis en produits pétrochimiques à valeur ajoutée, y compris le charbon aromatique, l'hydrogène, le gaz de synthèse et le pétrole brut biologique à l'aide de diverses technologies, notamment la thermochimie, la conversion catalytique et la chimiolyse. Cette revue se concentre sur les technologies, les opportunités, les défis et les perspectives de récupération des déchets plastiques pour la conversion en produits pétrochimiques à valeur ajoutée. L'examen explore également les approches techniques et de gestion pour la conversion des déchets plastiques en produits pétrochimiques en ce qui concerne la faisabilité commerciale et la durabilité économique et environnementale. En outre, ce travail d'examen fournit une discussion détaillée sur les opportunités et les défis associés aux récentes technologies de conversion thermochimique et catalytique adoptées pour la récupération des déchets plastiques en combustibles et produits chimiques. L'examen recommande également des perspectives de recherche future pour améliorer les processus et le rapport coût-efficacité des technologies prometteuses pour la conversion des déchets plastiques en produits pétrochimiques. Il est prévu que cet examen surmonte les lacunes en matière de connaissances sur les technologies de conversion et contribue davantage aux approches durables émergentes pour l'exploitation des déchets plastiques pour des produits à valeur ajoutée. Se ha demostrado que la producción de plástico y su gestión y eliminación no planificadas contaminan los entornos terrestres, acuáticos y atmosféricos. Los plásticos derivados del petróleo no se descomponen y tienden a persistir en el entorno durante más tiempo. Los plásticos se pueden ingerir y acumular en los tejidos de los animales terrestres y acuáticos, lo que puede impedir su crecimiento y desarrollo. Los productos petroquímicos son las principales materias primas para la fabricación de plásticos. Los residuos plásticos se pueden recuperar para convertirlos en productos petroquímicos de valor añadido, como carbón aromático, hidrógeno, gas de síntesis y petróleo biocrudo, utilizando diversas tecnologías, como la termoquímica, la conversión catalítica y la quimiolisis. Esta revisión se centra en las tecnologías, oportunidades, desafíos y perspectivas de la recuperación de residuos plásticos para su conversión en productos petroquímicos de valor añadido. La revisión también explora los enfoques técnicos y de gestión para la conversión de desechos plásticos en productos petroquímicos con respecto a la viabilidad comercial y la sostenibilidad económica y ambiental. Además, este trabajo de revisión proporciona una discusión detallada sobre las oportunidades y los desafíos asociados con las recientes tecnologías de conversión termoquímica y catalítica adoptadas para la recuperación de residuos plásticos en combustibles y productos químicos. La revisión también recomienda perspectivas de investigación futura para mejorar los procesos y la rentabilidad de las tecnologías prometedoras para la conversión de residuos plásticos en productos petroquímicos. Se prevé que esta revisión supere las lagunas de conocimiento sobre las tecnologías de conversión y contribuya aún más a los enfoques sostenibles emergentes para explotar los desechos plásticos para productos de valor agregado. Plastic production and its unplanned management and disposal, has been shown to pollute terrestrial, aquatic, and atmospheric environments. Petroleum-derived plastics do not decompose and tend to persist in the surrounding environment for longer time. Plastics can be ingested and accumulate into the tissues of both terrestrial and aquatic animals, which can impede their growth and development. Petrochemicals are the primary feedstocks for the manufacture of plastics. The plastic wastes can be retrieved back for conversion to value added petrochemicals including aromatic char, hydrogen, synthesis gas, and bio-crude oil using various technologies including thermochemical, catalytic conversion and chemolysis. This review focusses on technologies, opportunities, challenges and outlooks of retrieving back plastic wastes for conversion to value added petrochemicals. The review also explores both the technical and management approaches for conversion of plastic wastes to petrochemicals in regard to commercial feasibility, and economic and environmental sustainability. Further, this review work provides a detailed discussion on opportunities and challenges associated with recent thermochemical and catalytic conversion technologies adopted for retrieving plastic waste to fuels and chemicals. The review also recommends prospects for future research to improve the processes and cost-efficiency of promising technologies for conversion of plastic wastes to petrochemicals. It is envisioned that this review would overcomes the knowledge gaps on conversion technologies and further contribute in emerging sustainable approaches for exploiting plastic wastes for value-added products. وقد تبين أن إنتاج البلاستيك وإدارته والتخلص منه بشكل غير مخطط له يلوث البيئات الأرضية والمائية والغلاف الجوي. لا تتحلل المواد البلاستيكية المشتقة من البترول وتميل إلى الاستمرار في البيئة المحيطة لفترة أطول. يمكن ابتلاع البلاستيك وتراكمه في أنسجة كل من الحيوانات البرية والمائية، مما قد يعيق نموها وتطورها. البتروكيماويات هي المواد الأولية لتصنيع البلاستيك. يمكن استرجاع النفايات البلاستيكية مرة أخرى لتحويلها إلى مواد بتروكيماوية ذات قيمة مضافة بما في ذلك الفحم العطري والهيدروجين وغاز التخليق وزيت الخام الحيوي باستخدام تقنيات مختلفة بما في ذلك التحويل الكيميائي الحراري والتحفيز والتحلل الكيميائي. تركز هذه المراجعة على تقنيات وفرص وتحديات وتوقعات استعادة النفايات البلاستيكية لتحويلها إلى مواد بتروكيماوية ذات قيمة مضافة. كما يستكشف الاستعراض كلا من النهجين التقني والإداري لتحويل النفايات البلاستيكية إلى البتروكيماويات فيما يتعلق بالجدوى التجارية والاستدامة الاقتصادية والبيئية. علاوة على ذلك، يقدم عمل المراجعة هذا مناقشة مفصلة حول الفرص والتحديات المرتبطة بتقنيات التحويل الكيميائية الحرارية والحفازة الحديثة المعتمدة لاستعادة النفايات البلاستيكية إلى الوقود والمواد الكيميائية. توصي المراجعة أيضًا بآفاق البحث المستقبلي لتحسين العمليات وفعالية تكلفة التقنيات الواعدة لتحويل النفايات البلاستيكية إلى البتروكيماويات. ومن المتوخى أن تتغلب هذه المراجعة على الفجوات المعرفية المتعلقة بتكنولوجيات التحويل وأن تسهم كذلك في النهج المستدامة الناشئة لاستغلال النفايات البلاستيكية في المنتجات ذات القيمة المضافة.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2022 DenmarkPublisher:Elsevier BV Mustafa Man; Hwai Chyuan Ong; Christian Sonne; Christian Sonne; Wan Adibah Wan Mahari; Wan Adibah Wan Mahari; Tan Suet May Amelia; Yafeng Yang; Meththika Vithanage; Seng Hon Kee; Su Shiung Lam; Su Shiung Lam; Shin Ying Foong; Kesaven Bhubalan;En el presente estudio, se utilizó la copirólisis por microondas (MCP) para convertir simultáneamente los desechos plásticos médicos (MPW) y el aceite de freír residual (WFO) en productos de aceite líquido. El proceso MCP demostró una velocidad de calentamiento más rápida (24 °C/min) y un tiempo de proceso más corto (20 min) en comparación con las técnicas de pirólisis convencionales que convierten MPW y WFO en aceite líquido (≥80% en peso). El MCP redujo el contenido de oxígeno de 25.7 a 9.82% en peso en aceite líquido que abarca hidrocarburos alifáticos ligeros que van de C10 a C28, generando un nuevo combustible líquido sostenible. El líquido que tiene un alto contenido de carbono (aproximadamente 77.1% enpeso) y una baja relación de carbono a nitrógeno (27.9) es una materia prima energética adecuada para la producción de bioplásticos de polihidroxialcanoato (PHA) en forma de poli3-hidroxibutirato [P(3HB)]. El aceite líquido actuó como fuente de energía para el crecimiento de Bacillus sp. Durante la fermentación microbiana, produciendo aproximadamente 11% (p/p) de P(3HB). Los bioplásticos son biodegradables, biocompatibles con los seres humanos y no tóxicos para los organismos marinos, lo que representa un valioso aditivo en la producción de cosméticos, detergentes y como andamios médicos para la ingeniería de tejidos. Los resultados indican el prometedor reciclaje de productos de desecho mediante este enfoque a través de la biorrefinería pirolítica en combustibles de valor agregado y productos bioplásticos, siendo importante para la futura producción sostenible de recursos renovables. Dans la présente étude, la co-pyrolyse par micro-ondes (MCP) a été utilisée pour convertir simultanément les déchets plastiques médicaux (MPW) et les déchets d'huile de friture (WFO) en produits pétroliers liquides. Le procédé MCP a démontré une vitesse de chauffage plus rapide (24 °C/min) et un temps de traitement plus court (20 min) par rapport aux techniques de pyrolyse conventionnelles convertissant le MPW et le WFO en huile liquide (≥80 % en poids). Le MCP a réduit la teneur en oxygène de 25,7 à 9,82 % en poids dans l'huile liquide comprenant des hydrocarbures aliphatiques légers allant de C10 à C28, générant un nouveau carburant liquide durable. Le liquide ayant une teneur élevée en carbone (environ 77,1 % en poids) et un faible rapport carbone/azote (27,9) est une charge d'alimentation énergétique appropriée pour la production de bioplastique polyhydroxyalcanoate (PHA) sous forme de poly3-hydroxybutyrate [P(3HB)]. L'huile liquide a servi de source d'énergie pour la croissance de Bacillus sp. Pendant la fermentation microbienne, produisant environ 11 % (p/p) de P(3HB). Les bioplastiques sont biodégradables, biocompatibles avec les humains et non toxiques pour les organismes marins, représentant un additif précieux dans la production de cosmétiques, de détergents et en tant qu'échafaudages médicaux pour l'ingénierie tissulaire. Les résultats indiquent que le recyclage prometteur des déchets par cette approche à travers la bioraffinerie pyrolytique en carburant à valeur ajoutée et en produits bioplastiques est important pour la future production durable de ressources renouvelables. In the present study, microwave co-pyrolysis (MCP) was used to simultaneously convert medical plastic waste (MPW) and waste frying oil (WFO) into liquid oil products. The MCP process demonstrated a faster heating rate (24 °C/min) and shorter process time (20 min) compared to conventional pyrolysis techniques converting MPW and WFO into liquid oil (≥80 wt%). The MCP reduced the oxygen content from 25.7 to 9.82 wt% in liquid oil encompassing light aliphatic hydrocarbons ranging from C10 to C28, generating a novel sustainable liquid fuel. The liquid having a high carbon content (approximately 77.1 wt%) and low carbon to nitrogen ratio (27.9) is a suitable energy feedstock for polyhydroxyalkanoate (PHA) bioplastic production in the form of poly3-hydroxybutyrate [P(3HB)]. The liquid oil acted as an energy source for the growth of Bacillus sp. During microbial fermentation, yielding approximately 11% (w/w) P(3HB). Bioplastics are biodegradable, biocompatible with humans and non-toxic to marine organisms, representing a valuable additive in the production of cosmetics, detergents, and as medical scaffolds for tissue engineering. The results indicate the promising upcycling of waste products by this approach through pyrolytic biorefinery into value-added fuel and bioplastic products, being important for the future sustainable production of renewable resources. في هذه الدراسة، تم استخدام الانحلال الحراري المشترك للميكروويف (MCP) لتحويل النفايات البلاستيكية الطبية (MPW) وزيت قلي النفايات (WFO) في وقت واحد إلى منتجات زيتية سائلة. أظهرت عملية MCP معدل تسخين أسرع (24 درجة مئوية/دقيقة) ووقت معالجة أقصر (20 دقيقة) مقارنة بتقنيات التحلل الحراري التقليدية التي تحول وزارة الأشغال العامة و WFO إلى زيت سائل (≥80 ٪ بالوزن). قلل MCP من محتوى الأكسجين من 25.7 إلى 9.82 ٪ بالوزن في الزيت السائل الذي يشمل الهيدروكربونات الأليفاتية الخفيفة التي تتراوح من C10 إلى C28، مما يولد وقودًا سائلًا مستدامًا جديدًا. السائل الذي يحتوي على نسبة عالية من الكربون (حوالي 77.1 ٪ بالوزن) ونسبة منخفضة من الكربون إلى النيتروجين (27.9) هو مادة تغذية مناسبة للطاقة لإنتاج البلاستيك الحيوي للبولي هيدروكسي ألكانوات (PHA) في شكل بولي 3 -هيدروكسي بوتيرات [P(3HB)]. كان الزيت السائل بمثابة مصدر للطاقة لنمو Bacillus sp. أثناء التخمير الميكروبي، ينتج حوالي 11 ٪ (وزن/وزن) P(3HB). اللدائن الحيوية قابلة للتحلل الحيوي، ومتوافقة حيويًا مع البشر وغير سامة للكائنات البحرية، وتمثل مادة مضافة قيمة في إنتاج مستحضرات التجميل والمنظفات، وكسقالات طبية لهندسة الأنسجة. تشير النتائج إلى إعادة التدوير الواعدة للنفايات من خلال هذا النهج من خلال التكرير الحيوي للتحلل الحراري إلى وقود ذي قيمة مضافة ومنتجات بلاستيكية حيوية، كونها مهمة للإنتاج المستدام المستقبلي للموارد المتجددة.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Rock Keey Liew; Yoke Wang Cheng; Mortaza Aghbashlo; Shin Ying Foong; Shin Ying Foong; Quyet Van Le; Peter Nai Yuh Yek; Dai-Viet N. Vo; Wan Adibah Wan Mahari; Meisam Tabatabaei; Christian Sonne; Su Shiung Lam; Su Shiung Lam; Xie Yi Lee; Chai Sean Han; Wanxi Peng; Yafeng Yang;Abstract Biomass waste represents the promising surrogate of fossil fuels for energy recovery and valorization into value-added products. Among thermochemical conversion techniques of biomass, pyrolysis appears to be most alluring owing to its low pollutant emission and diverse products formation. The current pyrolysis applications for valorization of biomass waste is reviewed, covering the key concepts, pyrolysis mode, operating parameters and products. To date, existing types of pyrolysis include conventional pyrolysis (poor heat transfer due to non-selective heating), vacuum pyrolysis (lower process temperature because of vacuum), solar pyrolysis (entirely “green” with solar-powered), and a newly touted microwave pyrolysis. In microwave pyrolysis of biomass, the heat transfer is more efficient as the heat is generated within the core of material by the interaction of microwave with biomass. The plausible mechanisms of microwave heating are dipole polarization, ionic conduction and interfacial polarization. The lack of top-tier reactor design is identified as the main obstacle that impedes the commercialization of microwave pyrolysis in biomass recycling. Based on the existing works, it is surmised that microwave pyrolysis of biomass produces solid biochar as a main product. To confront the great market demand of activated biochar, it is proposed that the solid char could be upgraded into engineered activated biochar with desirable properties for wide application in pollution control, catalysis and energy storage. Hence, the production of engineered activated biochar from microwave pyrolysis process and its applications are reviewed and explicitly discussed to fill the research gap, and the key implications for future development are highlighted.
PURE Aarhus Universi... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.more_vert PURE Aarhus Universi... arrow_drop_down Chemical Engineering JournalArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
