Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Journal
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions

Authors: Rock Keey Liew; Yoke Wang Cheng; Mortaza Aghbashlo; Shin Ying Foong; Shin Ying Foong; Quyet Van Le; Peter Nai Yuh Yek; +10 Authors

Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions

Abstract

Abstract Biomass waste represents the promising surrogate of fossil fuels for energy recovery and valorization into value-added products. Among thermochemical conversion techniques of biomass, pyrolysis appears to be most alluring owing to its low pollutant emission and diverse products formation. The current pyrolysis applications for valorization of biomass waste is reviewed, covering the key concepts, pyrolysis mode, operating parameters and products. To date, existing types of pyrolysis include conventional pyrolysis (poor heat transfer due to non-selective heating), vacuum pyrolysis (lower process temperature because of vacuum), solar pyrolysis (entirely “green” with solar-powered), and a newly touted microwave pyrolysis. In microwave pyrolysis of biomass, the heat transfer is more efficient as the heat is generated within the core of material by the interaction of microwave with biomass. The plausible mechanisms of microwave heating are dipole polarization, ionic conduction and interfacial polarization. The lack of top-tier reactor design is identified as the main obstacle that impedes the commercialization of microwave pyrolysis in biomass recycling. Based on the existing works, it is surmised that microwave pyrolysis of biomass produces solid biochar as a main product. To confront the great market demand of activated biochar, it is proposed that the solid char could be upgraded into engineered activated biochar with desirable properties for wide application in pollution control, catalysis and energy storage. Hence, the production of engineered activated biochar from microwave pyrolysis process and its applications are reviewed and explicitly discussed to fill the research gap, and the key implications for future development are highlighted.

Keywords

Biomass pyrolysis, Energy recovery, Biochar, Microwave heating, Waste valorization/recycling, Sustainable production

Powered by OpenAIRE graph
Found an issue? Give us feedback