- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
Country
Language
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Rayegan, Saeed; Wang, Liangzhu (Leon); Zmeureanu, Radu; Katal, Ali; Mortezazadeh, Mohammad; Moore, Travis; Ge, Hua; Lacasse, Michael; Shi, Yurong;Achieving carbon–neutral building stock by 2050 contributes to coping with the detrimental impacts of global warming since buildings account for almost 37% of final energy-related CO₂ emissions. This paper reviews the publications on carbon neutrality (CN) feasibility at both single and multi-building complex scales. Publications are retrieved from the Scopus database, and the snowball method is used to find the most relevant studies. The paper addresses the primary question: “Is it possible to reach the life cycle carbon neutrality of buildings?”. Various information such as building life cycle carbon assessment, building characteristics (usage type and number of stories), climate type, mitigation measures, and simulation results are extracted, classified, and analyzed. Technically, reaching CN is feasible, but it is challenging given the need to implement multiple mitigation measures simultaneously, especially in the regions with low emissions intensity of the electricity grid, and may not always be economically feasible. A lack of successful case studies for large multi-building complexes, such as cities, is evident in the literature. It can be attributed to the limited availability of input data for carbon assessments as well as the complexity of simulations. Knowledge gaps in the literature and suggestions for future works are also discussed in detail. Due to the small number of studies on the topic, conclusive paths to reach the CN of buildings, specific to different climates and types of buildings, remain unclear, and thus, further research is necessary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:SAGE Publications Authors: Salehpour, Benyamin; Ghobadi, Mehdi; Ge, Hua; Moore, Travis;Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Rayegan, Saeed; Wang, Liangzhu (Leon); Zmeureanu, Radu; Katal, Ali; Mortezazadeh, Mohammad; Moore, Travis; Ge, Hua; Lacasse, Michael; Shi, Yurong;Achieving carbon–neutral building stock by 2050 contributes to coping with the detrimental impacts of global warming since buildings account for almost 37% of final energy-related CO₂ emissions. This paper reviews the publications on carbon neutrality (CN) feasibility at both single and multi-building complex scales. Publications are retrieved from the Scopus database, and the snowball method is used to find the most relevant studies. The paper addresses the primary question: “Is it possible to reach the life cycle carbon neutrality of buildings?”. Various information such as building life cycle carbon assessment, building characteristics (usage type and number of stories), climate type, mitigation measures, and simulation results are extracted, classified, and analyzed. Technically, reaching CN is feasible, but it is challenging given the need to implement multiple mitigation measures simultaneously, especially in the regions with low emissions intensity of the electricity grid, and may not always be economically feasible. A lack of successful case studies for large multi-building complexes, such as cities, is evident in the literature. It can be attributed to the limited availability of input data for carbon assessments as well as the complexity of simulations. Knowledge gaps in the literature and suggestions for future works are also discussed in detail. Due to the small number of studies on the topic, conclusive paths to reach the CN of buildings, specific to different climates and types of buildings, remain unclear, and thus, further research is necessary.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:SAGE Publications Authors: Salehpour, Benyamin; Ghobadi, Mehdi; Ge, Hua; Moore, Travis;Reducing energy consumption and Greenhouse Gas (GHG) emissions is an essential part of the clean growth and climate change framework recently developed by the Canadian government, which emphasizes the importance of energy-efficient building constructions. In this paper, the effects of thermal mass and placement of the thermally massive layer within wall assemblies on the transient thermal performance of walls and energy performance of a case study office building were studied. Three climate conditions representative of the heating-dominated, temperate, and cooling-dominated climates were considered. As for the assessment of energy demands, two cases for the indoor air temperature were taken into account: (i) indoor temperature was maintained at 20°C throughout the year, and (ii) during summertime, there was a set-point of 24°C and a setback of 35°C during the rest of the day while during wintertime, the set-point and setback values were 22°C and 18°C, respectively. The cases were compared according to the resulting decrement factor, the time required to reach quasi-steady state conditions, amplitudes of changes of heat fluxes and indoor surface temperatures, and the energy demands. The results showed that, for the cases studied, the wall, for which the thermally massive layer is not directly exposed to the indoor and outdoor climate conditions, resulted in the lowest decrement factor, the minimum amplitude of changes of heat fluxes and indoor surface temperatures, and maximum time required to reach quasi steady-state conditions. As for the energy performance, on the other hand, the wall, for which the thermally massive layer is exposed to the interior and exterior climate conditions, performed best amongst the cases investigated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
